Assessment of Models for Near Wall Behavior and Swirling Flows in Nuclear Reactor Sub-systems SAND2015-7029 C

European Turbulence Conference 15 Delft Technical University Delft, Netherlands August 25-29, 2015

Thomas M. Smith Center for Computing Research Sandia National Laboratories Albuquerque, New Mexico USA Mark A. Christon Emilio Baglietto, Ben Magolan, MIT

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Background

- Consortium for Advanced Simulation of Light Water Reactors (CASL)
 - U.S. DoE Energy Innovation Hub —
 - 24 institutions involved _
 - Beginning of the second five year research phase
- CASL Goals and Challenges
 - Develop/deploy software for advanced Simulation of PWR and BWR —
 - Coupled high-fidelity Thermal Hydraulics, Neutronics, CHT •
 - UQ, Parameter Sensitivities, Optimization ٠
 - Objectives for Thermal Hydraulics (TH) Focus area —
 - Full reactor core coupled physics simulations ٠
 - Predict fuel rod performance on existing systems and new designs ٠
 - Predict grid-to-rod-fretting, mechanical wear due to flow induced vibration ۰
 - Predict CRUD (Chalk River Unidentified Deposit) deposition ۰
- Hydra-TH
 - Hybrid finite-volume/finite-element incompressible/low-Mach number CFD code _
 - Solves incompressible Navier-Stokes equations with heat conduction and transport on heterogeneous unstructured meshes

Assessment of Turbulence Models

- Large sub-system scale and full system scale simulations require the use of RANS
- Accurate prediction of QoI such as Cf and Nu require estimation of wall normal gradients
- Wall damping or wall functions or both?
- RANS Eddy Viscosity Models
 - Spalart-Allmaras Eddy Viscosity Model with wall damping
 - Requires normal-distance to walls at every integration cell
 - Integrate to the wall y+<=5
 - Simple wall boundary condition nut=0
 - Surface gradients computed using finite-differences
 - k-ε Eddy Viscosity Models with y* insensitive wall function
 - · Requires normal distance in wall adjacent cells
 - First cell in log layer, y+=20-40
 - Surface gradients and temperature are inferred based on the wall function
 - All of the k- ϵ model variations use the same wall function

3

Assessment of Turbulence Models Cont.

х у Z

- Turbulence Sub-System Test Problems
 - Detailed examination of model accuracy and robustness
 - Known expected outcomes
 - Contain important flow features present in reactor cores
- From simple to complex
 - Flow structures
 - geometry
 - coupled physics

hydra.lanl.gov

Wall Functions y^{*} insensitive 2 Level Model (Launder&Spalding, 1974; Grotjans&Menter, 1989; Craft et al. 2002)

- Enforce Law-of-the-Wall behavior in the cells adjacent to walls
- Replace y+ and u+ with y* and u*
- The distance to the first cell value yp can be no less than the edge of the viscous sublayer yv

Cubit Mesh

$$\Pr_t = 1$$

$$\mu = 1.0E - 6$$

Flow

- Domain: L/D=20
- Entry Length: L/D=20
- ReD: 19,743; 42,269; 82,291
- y+: 0.9, 1.7, 3.0
- Key:
 - calc finite difference for grad T
 - ref use BC value for qw

Nusselt Number

 $Nu = \frac{hD}{\kappa} = \frac{\dot{q}_{w}^{"}D}{\kappa(T_{w} - T_{w})}$

Newton's Law of Cooling

 $\dot{q}_{w}^{"}=h(T_{w}-T_{m})$

Mixing Vm and Tm

$$V_{m} = \frac{1}{\rho A} \int_{A} \rho \mathbf{u} \cdot \mathbf{n} dA$$
$$T_{m} = \frac{1}{\rho V_{m} A} \int_{A} \rho \mathbf{u} \cdot \mathbf{n} T dA$$

Wall heat flux and Temperature

$$\dot{q}_{w}^{''} = \frac{1}{L} \oint_{L} \kappa \frac{\partial T}{\partial n} dt$$
$$T_{w} = \frac{1}{L} \oint_{L} T dt$$

- Domain: L/D=20
- ReD: 18,100: 39,200; 78,300

Constant wall temperature

• y*: 13, 29, 53

Key

calc – finite difference for grad T ref – use BC value for qw y* - wall function

Constant wall heat flux

- Domain: L/D=20
- ReD: 18,100: 39,200; 78,300
- y*: 13, 29, 53

Key

calc – finite difference for grad T ref – use BC value for qw y* - wall function

Constant wall heat flux

9

Constant wall temperature

Nusselt Number, Hydra, Pr=1, Prt=1, tube3d, Const. Twall

Impinging Jet Post Processing using Law of the Wall (with E. Baglietto and B. Magolan, MIT)

Test Conditions

 $\text{Re}_{D} = 23,000, \text{Pr} = 0.71, \text{Pr}t = 0.85, H/D = 2, r/D = 8, V_{\text{introin}} 0.01U_{z}, p_{out} = 0$

Model	Scale	Range	Average
SA	y+	1.5-9.8	7.6
STD-KE	y*	3.6-21.1	16.7
RNG-KE	y*	3.8-13.2	11.1
NL-KE	у*	5.0-17.0	13.5

Nusselt Number, Hydra, Pr=0.71, Prt=0.85, Impinging Jet, Const. qw

3x3 Rod/Spacer Grid Sub-Assembly-Energy Balance

- Two estimates of heat flux from hot rods
 - Post process using finite-difference to compute grad T
 - Wall Function
- Quantity of Interest is the steady-state heat balance

$$Q = \dot{q}_{w}^{"}A$$

$$H = \rho C T u A$$

$$H = \rho C_{p} I u A$$
$$H_{out} = H_{in} + Q$$

Test Conditions Mesh: ~3E6 heterogeneous elem ReD=218,025 Pr=1 Prt=0.9 Tin=150.0 uin=5 qwin=1.0e6 Tw=300

	y*/y+	BC	Wall Func.	qw_in (fd) rods	H_in	total	H_out	%diff
KE	18 – 2206 / 252	const. qw		1,655 mod. T	1,019,647	1,021,302	1,038,597	1.7
SA	1 – 66 / 44	const. qw		23,769 mod. T	1,056,631	1,080,400	1,084,112	0.3
KE	18 – 2206 / 252	const. Tw		13,715	1,042,958	1,056,674	1,395,642	24
KE	18 - 2206 / 252	const. Tw	317,194		1,042,958	1,360,152	1,395,642	2.5
SA	1 – 66 / 44	const. Tw		18919	1,042,958	1,061,877	1,051051	1

Summary

- Demonstrated the heat transfer capabilities for different eddy viscosity models that use damping or wall functions
- Based on this assessment of the CFD code near wall turbulence behavior has been identified as an area of concern
- Care must be exercised in interpreting surface Qols when using wall functions
- Low Re K-epsilon models should be considered to try and improve predictions of surface Qols and make fair comparison with wall function using the same base model
- Development plan and execution of the plan can be found in CASL documents
 - "Multi-Year Plan for Enhancing Turbulence Modeling in Hydra-TH," (L3.THM.CFD.P10.02), 2014
 - Findings from this first year will be reported later this year "Enhanced Turbulence Model Capabilities in Hydra-TH," (L3.THM.CFD.P11.04), 2014

Helicity - SA with CC

www.casl.gov