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Abstract

A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the
hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and
arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the contin-
uum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique
and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physi-
cally consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered
scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

1. Introduction

Tensor calculus and theory are ubiquitous in mathematical physics, science and engineering. They constitute the
fundamental building blocks of governing conservation laws and many constitutive theories in continuum mechanics.
The divergence, gradient and curl operators together with the tensor/vector calculus theorems and identities lie at
the heart of numerous partial differential equations. Success of numerical solution to continuum principles relies on
the ability to replicate the continuum properties accurately in the discrete space. A numerical scheme is considered
robust and can infer realistic predictions only when it is constructed from solid mathematical theory. Such numerical
schemes also preserve important properties of continuum principle at the discrete level [1]. For instance, a few of
the continuum properties that are considered indispensable, in addition to several others, include the fundamental
conservation laws, the underlying symmetries in the solution, symmetry of the stress tensor (a consequence of angular
momentum conservation), preservation of divergence free conditions for solenoidal vectors, curl identities, etc [1].
Numerical schemes that can faithfully ”mimic” such continuum properties and principles in the discrete space are
termed as mimetic (compatible) methods [1, 2].

Discretization schemes are exact provided they are mimetic in formulation. Errors in mimetic formulations arise
from the approximations introduced in the constitutive relations and not from the discretization technique [3]. The
chief task in developing such exact discretization strategies is to formulate compatible or mimetic algebraic models
that yield stable, accurate, and physically consistent approximate solutions. Existing Finite-Volume (FV), Finite-
Difference (FD) and Finite-Element (FE) formulations take different paths in achieving this goal by suitably approx-
imating the underlying divergence, gradient and curl operators. Compatibility between the discrete and continuum
space for these methods have been demonstrated by exploiting the staggering of the solution space [1, 2]. This stag-
gering of the solution space in turn restricts the placement and evolution of the field variables on the computational
mesh, viz the dynamical quantities at the vertices of the mesh and the thermodynamical quantities at the centroid of
the mesh elements. The staggering of field variables is also a common trait to FE, FV and even several FD schemes.

In spite of their sound justification, staggered formulations have found mixed success for gas dynamics and solid
dynamics applications, that are of particular interest to this work. The drawback with the staggered schemes arise
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from the approximations introduced in the constitutive relations. Due to the staggering in variables, such formulations
must be augmented with ad-hoc viscosity models to ensure dissipation of kinetic to internal energy [4, 5, 6, 7],
techniques for damping spurious modes that would otherwise lead to mesh instabilities [8, 9], special methods for
preserving symmetry in the solution [10], etc. Even the staggered grid based compatible formulations [11, 12, 13,
14] are not devoid of such issues. Alternative to staggered schemes is the cell-centered formulation, wherein all
quantities are stored and evolved at the centroid of the mesh elements. After a hiatus for several decades, the cell-
centered Lagrangian finite volume hydrodynamic schemes have gained renewed interest due to the novel formulations
advocated in [15, 16, 17, 18, 19, 20]. Past efforts in developing cell-centered schemes [21] suffered from premature
mesh entanglement issues that emanated from ad-hoc procedures utilized for extracting the vertex velocities (which in
turn are required to move the mesh). In contrast, the construction of nodal forces and velocities that are consistent with
Geometric Conservation Law (GCL) [22, 23] and compatible with both momentum and total energy conservation [11,
12], have made the recent formulations as promising alternatives. These cell-centered schemes do not require special
techniques for evaluating vertex velocities. The vertex velocity field is now part of the solution vector. Furthermore,
in contrast to staggered grid approaches, these schemes are inherently stable and robust by construction, without
requiring artificial tweaking and stabilizing parameters. In addition, the new cell-centered schemes are devoid of
spurious vorticity generation and mesh imprinting issues.

Past and present cell-centered Lagrangian FV schemes have been formulated based on Green’s integral theo-
rem [24, 25]. As a result, the mimetic properties for these formulations are difficult to establish. Furthermore, mimetic
principles postulated in [1, 2, 14, 26] may not be directly applied as the solution space is not staggered. Therefore, in
order for the cell-centered schemes to be established as standard and viable choice, it is important to ascertain their
compatible or mimetic properties. This motivates the current effort.

In this work, a finite volume cell-centered Lagrangian scheme for solving large deformation problems is con-
structed, based on the hypo-elastic model and using the mimetic theory. Some of the contributions that are exclusive
to this work are:

• Rigorous analysis corroborating the mimetic properties of cell-centered formulation - A cardinal aspect of
this work is to demonstrate/prove, via comprehensive analysis, the compatible properties associated with cell-
centered schemes. To this effect, the support operator method [27] is employed to derive the discrete version
of the continuum governing equations and constitutive theories. The analysis presented in this work holds valid
for both gas and solid dynamics, and arbitrary polygonal meshes.

• Unifying formulation for cell-centered schemes augmented with physically consistent dissipation model - Ex-
isting cell-centered schemes [15, 16, 17, 19, 20] differ in the quadrature rule employed for approximating the
divergence, gradient and curl operators. As a result, these schemes employ different viscosity model for evalu-
ating the field variables at the quadrature points for integration. In this work, a generic formulation is presented
that can be used to retrieve different flavors of cell-centered schemes by simply varying the dissipation model.
Furthermore, in contrast to the authors’ previous work [28, 29], the dissipation model employed is physically
consistent and inexpensive to implement [19].

• New mimetic formulation for evaluating gradients required for high-order reconstruction of field variables - In
accordance to the recurring theme of this work, a new gradient estimation technique based on mimetic formula-
tion is proposed. It will be shown in the results section that the gradient evaluation technique is both robust and
superior to existing and established techniques such as least squares [30] and Green’s integral theorem [25].

• Physics-inspired slope limiter scheme to ensure monotonicity of the reconstructed variable - A physically con-
sistent formulation for frame independent and symmetry preserving slope limiter scheme is proposed. A slope
limiter scheme constructed from the second invariant of stress tensor [31] is extended for constraining recon-
structed vectors. In the case of velocity vectors, slope limiters are extracted by limiting the specific kinetic
energy of the reconstructed vector field.

• Calculations on arbitrary and rough polygonal meshes in addition to extensive comparisons with representa-
tive Eulerian and Lagrangian hydrocodes - Computations on meshes comprising of polygonal elements with
arbitrary edges and quality are presented for solids undergoing large deformations. The results from these
calculations are compared with representative and established Eulerian and Lagrangian hydrocodes.

2



In essence, the following is performed for capturing the response of solids undergoing large deformation. Since
solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved
in addition to mass, momentum and energy conservation laws. In order to evolve the momentum equation, an area
weighted [10] formulation of the discrete divergence and gradient operators for the stress and velocity gradient tensors
are employed. Area weighted formulations have long been used for problems where it is desired that perfect one-
dimensional spherical symmetry be preserved as a possible limiting case in two-dimensional cylindrical geometry [10,
12]. To evolve the total energy equation, a control volume formulation [10, 12] of the discrete divergence operator
for the stress tensor is utilized. Due to the later choice, compatibility with the total energy conservation is established
with errors incurred in the momentum conservation. On the solid modeling side, the total strain-rate realized in the
material is split into the elastic and plastic response. The elastic and plastic components in turn are modeled using
the hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for
evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating
a rate equation, cast in an objective derivative form, based on Hooke’s law [32]. The dilatational response of the
material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for
using an iterative radial return algorithm [33, 34] constructed from the J2 von Mises yield condition.

2. Constitutive Relations and Governing Equations

2.1. Governing Equations in Differential Form

The differential form of the governing equations cast in the Lagrangian frame of reference and written in semi-
Lagrangian coordinates, take the following form:

dm

dt
= 0 (1)

ρ
duuu

dt
−∇∇∇ · σσσ = 0 (2)

ρ
dE

dt
−∇∇∇ · (σσσuuu) = 0 (3)

1

V

dV

dt
−∇∇∇ · uuu = 0 (4)

where m is the mass of the material, ρ is the material density, V is the material volume, σσσ = SSS−PIII is the symmetric
Cauchy stress tensor with SSS & P denoting the symmetric deviatoric stress tensor and pressure respectively. E =
e + 1

2uuu · uuu is the specific total energy with e defined as the specific internal energy and uuu is the velocity vector.
Equations (1), (2) & (3) constitute the mass, momentum and energy conservation laws and Eq (4) represents the
volumetric evolution equation. In combination with the kinematic equation

dxxx

dt
= uuu(xxx(t), t),xxx(0) = xxx, (5)

the GCL ensures the compatibility between the volume evolution equation (Eq (4)) and the volume computed from
geometry [23, 35].

Assuming Y to be the axis of (rotational) symmetry, both planar (XY) and axisymmetric (RZ) geometries can be
succinctly represented in a pseudo-Cartesian frame by introducing a pseudo-radius R(x) [21]

R(x) = 1− β + βx (6)

where β = 1 for cylindrical geometry and β = 0 otherwise (Figure 1). Therefore, the divergence operator for the
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velocity vector uuu and stress tensor σσσ in the governing equations reads as

∇∇∇ · uuu =
∂u

∂x
+
∂v

∂y
+ β

u

R
(7)

=
1

R
(
∂Ru

∂x
+
∂Rv

∂y
) (8)

∇∇∇ · σσσ =

(
∂σxx

dx +
∂σxy

dy
∂σxy

dx +
∂σyy

dy

)
+
β

R

(
σxx − σzz

σxy

)
(9)

=
1

R

(
∂(Rσxx

dx ) +
∂(Rσxy)

dy
∂(Rσxy)

dx +
∂(Rσyy)

dy

)
− β

R

(
σzz
0

)
(10)

Equations (7) and (9) and Eqs (8) and (10) correspond to the form of the divergence operator employed in what is called
the area-weighted and control volume representations of the integral form of the governing equations, respectively. In
combination with the vector identity

∇∇∇ · (σuσuσu) = uuu · (∇∇∇ · σσσ) + σσσ : ∇u∇u∇u (11)

and using Eqs (8) and (10), the following expression is obtained for the divergence of stress power:

∇∇∇ · (σu)(σu)(σu) =
1

R

(
(
d

dx
(Ruσxx +Rvσxy) +

d

dy
(Ruσxy +Rvσyy))

)
(12)

Figure 1: Cartesian frame (O,x,y) with y denoting the the axis of revolution

2.2. Constitutive Equations

Following the conventional theory of hypo-elasticity, an additive decomposition of strain-rate rule is invoked to
model the strain-rate tensor:

DDD = DDDE +DDDPL (13)

whereDDD is the strain-rate tensor given as,

DDD =
1

2
(∇u∇u∇u+∇u∇u∇uT ) (14)

andDDDE andDDDPL are the elastic and plastic strain-rate tensors respectively. Assuming incompressibility of the plastic
flow (tr(DDDPL) = 0), the volumetric or dilatational response is governed by an equation of state while the deviatoric
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response obeys a conventional flow theory of plasticity [36]. Hence, the total stress tensor σσσ in the continua can be
expressed as

σσσ = SSS − PIII (15)

where SSS is the traceless deviatoric component, PIII is the isotropic, dilatational component taken to be positive in
compression. Using Eq (13), the rate of change of deviatoric stress tensor can be modeled using the hypo-elastic
stress-strain relation (in the limit of small deformation):

O
SSS= 2G(D̄DD −DDDPL) (16)

where G is the shear modulus and
O
SSS is the Jaumann derivative [37]

O
SSS= ṠSS +SSSΩΩΩ−ΩΩΩSSS (17)

and ΩΩΩ is the spin tensor. The Jaumann derivative is used to ensure objectivity of the stress tensor with respect to
rotation. The spin tensor used in Eq (17) is given by:

ΩΩΩ =
1

2
(∇u∇u∇u−∇u∇u∇uT ) (18)

The deviatoric strain-rate component D̄DD in Eq (16) is given by:

D̄DD = DDD − 1

3
(((∇ ·UUU)III (19)

2.2.1. Predictor-Corrector Algorithm and the Plasticity Model
In accordance with the hypo-elastic theory, the stress tensor is evolved by a predictor-corrector algorithm. A

predicted trial elastic state of stress SSStr is determined by assuming a pure elastic deformation i.e. by settingDDDPL = 0
in (Eq (16)), to obtain:

ṠSStr +SSStrΩΩΩ−ΩΩΩSSStr = 2GD̄DD (20)

The final state of stress is determined by accounting for plastic deformation via a radial return algorithm (section Ap-
pendix B). The isochoric plastic deformation (D̄DDPL

= DDDPL) in Eq (13) is modeled assuming a coaxial flow theory
(Druckers’ postulate) for strain hardening materials [32]:

DDDPL = Λ̇NNN (21)

whereNNN = SSS√
S : SS : SS : S

is the unit outward normal to the yield surface and Λ̇ is a proportional positive scalar factor called

the consistency parameter [36]. The consistency parameter Λ̇ is determined using the J2 von Mises yield condition.
The effective stress (Seff ) and the effective plastic strain-rate ( ˙̄εp) are given by:

S2
eff =

3

2
S : SS : SS : S (22)

( ˙̄εp)
2

=
2

3
DDDPL : DDDPL (23)

=
2

3
Λ̇2 (24)

Details on the constitutive relations, material models and the return mapping algorithm employed in this work, in
addition to the equation of state for computing the dilatational response of the material, can be found in [38, 39, 40, 36].
For the sake of the readers’ convenience, a concise discussion on these topics are presented in the appendix of this
paper.
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3. Notations

(a) Notations

C	  

P

Primal Mesh Element 
Dual Mesh Element 
 Subcell   ψ c

p

ψ p

ψ c

(b) Primal, Dual and Subcell Elements

Figure 2: (a) Figure showing the vertices p, p− and p+ in the counter-clockwise ordered list P(c). Likewise, the cells c, c− and c+ in the
counter-clockwise ordered list C (p) are also shown. The arrows pointing between the midpoint of the edges to the vertex p denote the half-edge

regions. The half-edge area vectors aaa(p,p
±)

c and the corner area vector aaapc for the vertex p with respect to the cell c are also displayed. (b) Figure
shows a fragment of the computational mesh with regions corresponding to the primal, dual and subcell elements

Without loss of generality, the existence of a discrete space $(t), defined by a continuous one-to-one linear map
$(t) = χ($(0)) and filled with non-overlapping arbitrary polygonal cells Ψc, encompassing the physical space is
assumed. In what follows, an arbitrary polygonal cell Ψc in $(t) is denoted by an unique index c and an arbitrary
vertex (also called node/point) in $(t) is denoted by p (Figure 2(a)). For any cell c, P(c) represents the set of
counter-clockwise ordered (list of) vertices defining the cell c (Figure 2(a)). For any vertex p, the vertices p− and p+

denote the preceding and succeeding vertices to p in the ordered list P(c). Similarly, C (p) corresponds to the set
of counter-clockwise ordered (list of) cells surrounding the vertex p. The set S (c) is also introduced to denote the
counter-clockwise ordered list of edges defining the cell c. Scalar, vector and tensor variables are denoted as φ,φφφ,ΦΦΦ
respectively. For the sake of convenience, the total time derivative dΦΦΦ

dt is often written as Φ̇ΦΦ.
Because of repeated use of subscripts and superscripts, it is important to state clearly the nomenclature rules

assumed throughout this work. The actual computational mesh associated with the cell Ψc is denoted as the primal
mesh. Similarly, there exists a dual mesh associated with vertex p (Figure 2(b)). In the dual mesh, the vertex p resides
at the centroid of the dual mesh element (Figure 2(b)). Mesh elements in the dual mesh are denoted by Ψp. The
indices corresponding to vertex and centroid are denoted by superscripts and subscripts respectively (Figure 2(a)).
For instance, the area of the primal and dual mesh elements with respect to the primal mesh are denoted as Ac and Ap

respectively. Alternatively, area of primal and dual mesh elements with respect to the dual mesh are denoted as Ac

and Ap respectively. Nevertheless, Ac = Ac and Ap = Ap as they both refer to the same regions in $(t). The dual
mesh and elements introduced here are never used in the computation. The actual computation is performed on the
primal mesh. As will be shown later, the dual mesh and elements come handy when deriving the discrete equations
and demonstrating the compatibility of the cell-centered schemes. Therefore, unless otherwise stated, the primal mesh
is always the reference mesh. Summations are always performed over the superscripts (with subscripts held constant).
In other words, the subscripts indicate the reference mesh about which the summations are performed.

A subcell Ψp
c is formed by the intersection of the cells in the primal and the dual mesh i.e. Ψp

c = Ψc ∩ Ψp

(Figure 2(b)). The area of the subcell Ψp
c is denoted as Apc (when viewed from the primal mesh). The following

6



identities immediately follow from the definition of subcell:

Ap =
∑
C (p)

Apc (25)

Ac =
∑
P(c)

Apc (26)

The same holds true for the volumes of the primal and dual mesh elements.

4. Governing Equations Revisited

The purpose of this section is to derive the discrete counterpart for the evolution equations. The equations that are
evolved in time constitute the mass, momentum, energy and volumetric conservation laws listed in Eqs (1), (2), (3) & (4)
respectively, in addition to the stress evolution equation presented in Eq (16). The evolution equations are solved in
the discrete space $(t) with each arbitrary polygonal cell Ψc (also denoted as c for convenience) denoting a control
volume/mass. To facilitate the derivation of the discrete expressions for the evolution equations, the integral form of
the governing equations is first formulated in these control volumes.

4.1. Control Volume and area weighted Formulations of Governing Equations

An elemental control volume dV , for both planar and cylindrical geometries, can be written as dV = RdA with
dA defined in the Cartesian frame as dA = dxdy. Using this definition and exploiting the Gauss-divergence integral
identity, the integral form of the evolution equations (Eqs (1), (2), (3), (4) & (16)) can be written as follows:

d

dt

∫
V (t)

dM = 0 (27)

d

dt

∫
A(t)

uuudM −
∫
∂A

σσσ ·nnnRdl + β

∫
A(t)

(
σzz
0

)
dA = 0 (28)

d

dt

∫
V (t)

EdM −
∫
∂A

nnn · (σσσ · uuu)Rdl = 0 (29)

d

dt

∫
A(t)

SSSdM +

∫
A(t)

(SΩSΩSΩ−ΩSΩSΩS)dM − 2G

∫
∂A

ρ(
1

2
nnn⊗ uuu+

1

2
uuu⊗nnn− 1

3
uuu ·nnnIII)Rdl = 0 (30)

d

dt

∫
V (t)

dV −
∫
∂A

uuu ·nnnRdl = 0 (31)

where dM = ρRdA is the elemental mass of the control volume V (t) and nnn denotes the outward unit normal vector
to the boundary ∂A of A. The set of equations displayed above correspond to the control volume representation of
the governing equations. The integral form of the stress evolution equation is obtained by integrating the constitutive
equation (Eq (20)) in combination with the Reynold’s transport theorem.

Defining an averaged pseudo-radius R̀ = 1
A

∫
A(t)

RdA and utilizing the expressions for the divergence opera-
tor (Eqs (8) & (9)), the area weighted representation of the momentum and stress evolution equations in Cartesian
reference frame can be written as follows:

d

dt

∫
A(t)

uuudµ−
∫
∂A

σσσ ·nnndl +
β

R̀

∫
A(t)

(
σxx − σzz

σxy

)
dA = 0 (32)

d

dt

∫
A(t)

(SSS +SΩSΩSΩ−ΩSΩSΩS)dµ− 2G

∫
∂A

ρ(
1

2
nnn⊗ uuu+

1

2
uuu⊗nnn− 1

3
uuu ·nnn)dl = 0 (33)

where dµ = ρdA is the planar inertia [17]. Note that, when β = 0, R = R̀ = 1. Thus it is recognized that in
both control volume and area weighted representations, the governing equations corresponding to planar geometry
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are recovered when β = 0. In light of the importance of preserving symmetry (if any) in the flow field, it is de-
sirable to work with area weighted representations of the momentum and stress evolution equations [12]. Hence,
Eqs (27), (32), (29), (33) & (31) constitute the set of equations (governing equations augmented with the evolution
equation for deviatoric part of stress tensor) that must be evolved in time.

4.2. Green’s Integral Identity for Discrete Representation of Governing Equations

Following the analysis presented in [41, 17], the discrete counterpart of the integral formulations of governing
equations (Eqs (27), (32), (29), (33), & (31)) can be approximated, by defining suitable averaged quantities, as follows:

dmc

dt
= 0 (34)

µc
duuuc
dt

+
∑
S (c)

σσσsc ·nnnscRsls −
β

R̀c

(
σxx,c − σzz,c

σxy,c

)
= 0 (35)

dEc
dt

+
∑
S (c)

nnnsc · (σσσsc · uuusc)Rsls = 0 (36)

µc(
dSSSc
dt

+SSScΩΩΩc −ΩΩΩcSSSc)− 2ρcG
∑
S (c)

(nnnsc ⊗ uuusc + uuusc ⊗nnnsc −
1

3
nnnsc · uuusc)ls = 0 (37)

dVc
dt
−
∑
S (c)

nnnsc · uuuscRsls = 0 (38)

where S (c) is the set of counter-clockwise ordered list of edges (the discrete analog of the boundary ∂A of in-
tegration) for cell Ψc, nnnsc is the normal vector to the edges in S (c), and the superscript s in uuusc,σσσ

s
c denotes the

approximation for the surface integral over an arbitrary edge s ∈ S (c):

ΦΦΦsc =
1

ls

∫
s

ΦΦΦdl (39)

and the variables uuuc, Ec, ΩΩΩc & SSSc denote the volume averaged velocity vector, total energy, spin and shear stress
tensor for the cell c:

ΦΦΦc =
1

Vc

∫
Ψc

ΦΦΦdV (40)

The system of equations presented above introduces the cell-centered formulation for the governing equations in
the discrete space. The primitive variables namely ρc,uuuc, Ec & σσσc are stored and evolved at the cell-center, once
the approximations to the surface fluxes in the discrete system are determined. It is important to recognize that the
formulation presented above is a direct consequence of the Green’s integral identity. This is the formulation that has
been employed in the existing cell-centered schemes [21, 15, 16, 17, 18, 19, 20]. Although such an approach may be
found adequate, however, the formulation becomes questionable as the validity of the tensor operators (gradient and
divergence), theorems and identities in the discrete space cannot be ascertained. Hence, the present work departs from
the existing notion with formulating the discrete equations for conservation laws. In this work, the discrete analog for
the governing equations are derived by invoking the mimetic theory and this is the subject of analysis for the rest of
this section.

4.3. Mimetic Theory for Discrete Divergence and Gradient Operators

To establish the discrete version of the governing equations, the discrete analogs for the gradient and divergence
operators must be determined at the outset. In accordance to the mimetic theory, these operators are formulated by
mimicking some of the crucial conservation laws and vector identities as accurately as possible in the discrete space.
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To this end, a first-order finite volume approximation for the discrete operators are defined as given below:

[∇∇∇�ΦΦΦ]c =
1

Vc

∫
Vc

∇∇∇�ΦΦΦdV (41)

[∇∇∇�ΦΦΦ]p =
1

V p

∫
V p

∇∇∇�ΦΦΦdV (42)

where � denotes dot, cross or tensor product operator permissible on Φ [42]. The symbol [ ]c|p indicates that the
operator is evaluated on the primal (c) or the dual (p) mesh. It is now required to determine [∇∇∇�ΦΦΦ]c to evolve the
governing equations.

Support operator method [27, 43], often used to construct mimetic schemes, provides a systematic approach for
constructing discrete analogs for the divergence and gradient operators [14]. The discrete operators constructed using
the support operator method satisfy relationships and identities that are intimately tied to the conversations laws and
physical principles. In what follows, the support operator method will be used to determine the functional form for
the discrete divergence and gradient operators.

The methodology adopted in this work follows the discussion outlined in [14]. The four key steps that are used in
the support operator method are as follows:

1. Determine the prime operator
2. Identify the derived/target operator (gradient of scalar/vector, divergence of tensor) for which the mimetic ex-

pression is sought
3. Based on the target operator, select important identities and conservation laws that must be satisfied
4. Enforce the identities and conservation laws via summation over the entire domain (in the discrete space) to

obtain the expression for the target/derived operator

As noted in [14], the prime operator is chosen based on the application and details of the discretization. As
the divergence of the velocity field is directly related to the volumetric strain-rate and since the volume of a cell
Vc = Vc(xxx

p) can be expressed as a computable function of the position vector of the vertices, xxxp ∈ P(c) [35],
it is logical to choose the divergence of vector as the prime operator [14]. Furthermore, there is also a freedom of
choosing the prime operator with respect to the primal or dual mesh as the conservation laws apply equally on both
reference meshes. As will be shown in the following sections, this fact is exploited to its fullest potential in deriving
the target operators. This is the most important step which distinguishes and immensely simplifies (without the need
for introducing and transforming to curvilinear coordinates [13]) the analysis presented in this work from [14, 13, 1, 2].

4.3.1. Discrete Operator for Divergence of Vectors - Prime Operator
The prime operator is the key to establishing the functional form of the target/derived operators. As an evolution

equation for volume is not explicitly solved, it is important to formulate the discretization scheme such that it remains
compatible with the volume evolution equation (and consequently with the stress-volume work). Since the divergence
of velocity vector is related to the volumetric strain-rate, expressing the rate of change of volume of a cell as:

d

dt
Vc(xxx

p) =∇∇∇Vc(xxxp) ·
dxxxp

dt
∀ p ∈ P(c) (43)

one can immediately guess how this relation can be used to extract the expression for the discrete divergence operator
for vectors. By performing triangular decomposition of the cell and by virtue of Pappus’ rule, the analytical expression
for the volume of an arbitrary polygonal cell Ψc can be expressed as:

Vc =
1

2(2 + β)

∑
P(c)

(Rp +Rp
−

)(xxxp
−
× xxxp) · kkk (44)

where kkk is the axis perpendicular to the plane of the paper (taken positive coming out of the paper) and the last term
corresponds to the planar area for the triangular segment formed by the triplet (O,xxxp

−
,xxxp). Inserting the expression
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for volume in Eq (43), the following is obtained:

d

dt
Vc =

1

2(2 + β)

∑
P(c)

[ (
Ṙp + Ṙp

−
)

(xxxp
− × xxxp)+

(Rp +Rp
−

)(ẋxxp
−
× xxxp + xxxp

− × ẋxxp)

]
· kkk (45)

=
1

2(2 + β)

∑
P(c)

 Ṙp(xxx(p) × xxxp+ + xxxp
− × xxxp)+

(Rp +Rp
+

)(ẋxxp × xxxp+)+

(Rp +Rp
−

)(xxxp
− × ẋxxp)

 · kkk (46)

where in the last expression, the indices corresponding to terms containing ẋxxp
−

& Ṙp
−

were shifted from p− → p. In
the above expressions, the term containing Ṙp corresponds to the contribution from the axisymmetric model. Noting
that ẋxx(p±) =

(
u(p±), v(p±)

)
and Ṙ(p±) = βu̇(p±), the equations displayed above can be simplified to obtain:

d

dt
Vc =

1

2(2 + β)

∑
P(c)



up


(
Rp +Rp

+
)(

yp
+ − yp

)
+(

Rp +Rp
−
)(

yp − yp−
)

+(
Rp

+ −Rp−
)
yp

−

vp


(
Rp +Rp

+
)(

xp
+ − xp

)
+(

Rp +Rp
−
)(

xp − xp−
)

+(
Rp

+ −Rp−
)
xp

+

Ṙp

{
xp(yp

+ − yp−)− yp(xp+ − xp−)
}


(47)

Analyzing the last term in the previous expression,{
xp(yp

+

− yp
−

)− yp(xp
+

− xp
−

)
}
kkk = xxxp × xxxp

+

+ xxxp
−
× xxxp

= 2xxxp × (xxxp
+

+ xxxp)

2
+ 2

(xxxp
−

+ xxxp)

2
× xxxp

= 2xxxp × xxx( p,p+

2 ) + 2xxx( p,p−
2 ) × xxxp

= 6Apckkk − 2Apckkk − 2(xxx( p,p+

2 ) × xxxc + xxxc × xxx( p,p−
2 ))) (48)

the contribution from the area of the subcell Apc formed by the cell c (with xxxc denoting the centroid), the vertex p and

the position vectors of the mid point (xxx( p,p±
2 ) =

(
xxxp+xxxp±

)
2 ) of the edges p, p± can be recognized (Figure 3):

4Apckkk = xxxp × xxxp
+

+ (xxxp
+

− xxxp
−

)× xxxc + xxxp
−
× xxxp (49)

Substituting this expression for the last term and rearranging the first term in Eq (47), the rate of change of volume
can be written as

d

dt
Vc =

1

2(2 + β)

∑
P(c)


up


(

2Rp +Rp
+
)(

yp
+ − yp

)
+(

2Rp +Rp
−
)(

yp − yp−
)
− 6βApc

−
vp


(

2Rp +Rp
+
)(

xp
+ − xp

)
+(

2Rp +Rp
−
)(

xp − xp−
) +

6ṘpA
p
c


(50)

As will be shown later, Eq (50) will be critical in obtaining an expression for the discrete gradient operator for vectors.
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ψ c
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( p,p− )
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( p,p+ )

n
(c,c+ )
( p)

n
(c,c− )
( p) c+	  

(p,p+ )
2

(p,p− )
2

c-‐	  

Figure 3: Figure shows the subcell Ψp
c formed by the centroid c, the vertex p and the midpoint of the edges (p,p±)

2
. The figure also shows the

normals nnnp

(c,c±)
to the edges in the dual mesh.

Simplifying Eq (50) yields the following relation [23, 35, 17]:

d

dt
Vc =

∑
P(c)

aaapc · uuup (51)

where
aaapc = aaa(p,p−)

c + aaa(p,p+)
c (52)

is the area-vector [23] (also called as the corner vector [11, 12, 16]), and

aaa(p,p±)
c =

1

2 + β
(2Rp +R(p±))

1

2
l(p,p

±)nnn(p,p±)
c (53)

nnn(p,p+)
c =

(xxxp
+ − xxxp)
l(p,p+)

× kkk (54)

nnn(p,p−)
c =

(xxxp − xxxp−)

l(p,p−)
× kkk (55)

are the half edge area and normal vectors associated with each edge emanating from p ∈P(c). One can immediately
recognize the following standard identities associated with the corner vector [16]:∑

P(c)

aaapc = βAcrrr (56)

∑
C (p)

aaapc = 0 (57)
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where Ac =
∑

P(c)A
p
c is the planar area of the cell c. The geometrical interpretation of the corner vector presented

in [16] also readily extends to aaapc . Thus, the discrete divergence operator for the velocity vector can be expressed as:

[∇∇∇ · uuu]c =
∑
P(c)

Dp
(c,x)u

p + Dp
(c,y)v

p + Dp
(c,R)Ṙ

p

=
1

Vc

∑
P(c)

aaapc · uuup

=
1

Vc

∑
P(c)

(aaa(p,p−)
c + aaa(p,p+)

c ) · uuup (58)

and therefore the components (Dx,vector,Dy,vector) of the discrete divergence operator take the form given below:

Dx,vector =
1

Vc

∑
P(c)

Dp
(c,x) =

1

Vc

∑
P(c)

(
aaa(p,p−)
c,x + aaa(p,p+)

c,x − 6β

2 (2 + β)
Apc

)
(59)

Dy,vector =
1

Vc

∑
P(c)

Dp
(c,y) =

1

Vc

∑
P(c)

aaa(p,p−)
c,y + aaa(p,p+)

c,y (60)

DR,vector =
1

Vc

∑
P(c)

Dp
(c,R) =

6β

2 (2 + β)Vc

∑
P(c)

Apc (61)

Examining Eq (58), it can be inferred that the discrete divergence operator for any arbitrary vector www is solely a
function of the geometrical quantities associated with the vertices. Hence, the first-order finite volume approximation
for∇∇∇div www is given as follows:

[∇∇∇div www]c =
1

Vc

∑
P(c)

(aaapc)· =
1

Vc

∑
P(c)

(aaa(p,p−)
c + aaa(p,p+)

c )· (62)

Eq (62) suggests that the quadrature points for the divergence operator for a vector could either reside on the half
edges (namely (p, p−) & (p, p+)) associated with each vertex p ∈P(c) or on the vertex p itself. Since the kinematic
condition (Eq (5)) demands the velocity vectors to be defined uniquely at the vertices (uuup), the most appropriate choice
for the quadrature points are the vertices of the mesh. This will become clear when the discrete gradient of scalar and
vector operators are determined. In fact, the degree of freedom in choosing the quadrature points is restricted to the
vertices of the mesh by the kinematic condition together with the curl identity.

The consistency of the above formulation can be demonstrated for an uniform flow in planar geometry. For such
flows, the volumetric strain rate∇∇∇·uuu reduces to zero and the same is mimicked at the discrete level due to the identity
listed in Eq (56). Comparing Eqs (51) & (38), the surface approximations at the quadrature points can be obtained:

uuusc = uuup and
nnnscl

sRs = aaapc

and the summation is now carried over the vertices defining the cell Ψc.

4.3.2. Discrete Operator for Gradient of Vectors
In this section, the discrete operator corresponding to gradient of a vector (target operator) is derived. To determine

this operator, the vector identity tr (∇∇∇www) = ∇∇∇ ·www that holds true for any vector www is enforced at the discrete level.
Selectingwww to be the velocity vector uuu, one obtains:

tr ([∇∇∇uuu]c) = [∇∇∇ · uuu]c (63)
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Therefore, from the expression for volumetric strain-rate displayed in Eq (50), the components of discrete gradient
operator can be identified by comparing the coefficients of (up, vp, Ṙp) in [∇∇∇ · uuu]c:∑

P(c)

G p
x,vectoru

p + G p
y,vectorv

p + G p
R,vectorṘ

p =
∑
P(c)

Dp
x,vectoru

p + Dp
y,vectorv

p + Dp
R,vectorṘ

p (64)

Gx,vector =
1

2(2 + β)Vc

∑
P(c)


(

2Rp +Rp
+
)
l(p,p

+)n
(p,p+)
c,x +(

2Rp +Rp
−
)
l(p,p

+)n
(p,p−)
c,x −

6βApc

 (65)

Gy,vector =
1

2(2 + β)Vc

∑
P(c)


(

2Rp +Rp
+
)
l(p,p

+)n
(p,p+)
c,y +(

2Rp +Rp
−
)
l(p,p

+)n
(p,p−)
c,y

 (66)

GR,vector =
6β

2(2 + β)Vc

∑
P(c)

Apc (67)

Therefore, the strain-rate tensor DDD and spin tensor ΩΩΩ, that are required to evolve the governing equations, can be
expressed as given below:

DDD =
1

2(2 + β)Vc


∑

P(c) G p
x u

p 1
2

∑
P(c)(G

p
y u

p + G p
x v

p) 0
1
2

∑
P(c)(G

p
y u

p + G p
x v

p)
∑

P(c) G p
y v

p 0

0 0
∑

P(c) GRṘp

 (68)

ΩΩΩ =
1

2(2 + β)Vc

 0 1
2

∑
P(c)(G

p
y u

p − G p
x v

p) 0

− 1
2

∑
P(c)(G

p
y u

p − G p
x v

p) 0 0

0 0 0

 (69)

For the special case when uuu = xxx and β = 1, the mimetic formulation for gradient operator reduces to∑
P(c)

G p
x x

p =
1

6Vc

∑
P(c)

(
Rp +Rp

+
)

(xpyp
+

− xp
+

yp) = 1 (70)

∑
P(c)

G p
y y

p =
1

6Vc

∑
P(c)

(
Rp +Rp

+
)

(xp
+

yp − xpyp
+

) = 1 (71)

∑
P(c)

G p
Rx

p =
1

6Vc

∑
P(c)

6xp
{
xpyp

+

− ypxp
+
}

= 1 (72)

∑
P(c)

G p
x y

p =
∑
P(c)

G p
y x

p = 0 (73)

From Eq (63) it is easy to see that
[∇∇∇ · xxx]c = 3 (74)

Similarly it can be shown that for a pure rigid body translation motion, the discrete velocity gradient and spin tensors
vanish.

Remark 1. It is worth noting that, for axisymmetric geometries, the discrete expression for gradient of vector operator
presented in this section has not been reported in the past. The terms in the expression are fairly intuitive and the key
step that lead to this expression is the intermediate form of the divergence of vector operator displayed in Eq (50). In
Eq (50), the contribution from the axisymmetric term were kept segregated from the rest of the terms and therefore a
term by term comparison was made feasible.
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4.3.3. Discrete Operator for Gradient of Scalars
There are multiple ways to deduce the discrete operator for gradient of scalars [44, 14]. The most simplest and

primitive approach is to obtain the expression by dotting the expression for gradient of vector with an unit vector (iii,
jjj & rrr in this case) to obtain the discrete operator in the direction of that unit vector. However, such an approach will
defeat the purpose of demonstrating the compatibility of the scheme. Therefore, in this section, a different approach
is adopted which leads to the aforementioned trivial outcome. This is primarily done to demonstrate the essence and
consistency of the mimetic formulation. Furthermore, it is believed that the steps outlined in this section may serve
as a set of general guidelines that could be potentially exploited in constructing discrete (mimetic) operators for other
applications. At this juncture, it is worth re-iterating that the vast amount of literature that exist on mimetic methods
are limited to staggered grid techniques. The cell-centered schemes that have been developed thus far have extended
the discrete formulation for ∂

∂x ,
∂
∂y operators, determined from the divergence (prime) operator, directly to the derived

operator. The validity of such an assumption is established through the analysis presented in this and subsequent
sections.

Following [44, 14], the discrete operator is established by exploiting the adjointness property of gradient and
divergence operators, defined by the vector identity written for an arbitrary volume V (t) and for a scalar ϕ:∫

V (t)

∇∇∇ϕ ·wwwdV =

∫
∂V (t)

ϕnnn ·wwwRdl −
∫

V (t)

ϕ∇∇∇ ·wwwdV (75)

Assuming a zero boundary integral (with ϕ vanishing at the boundary), the discrete analog for the integral identity
shown above can be written as ∑

c

[∇∇∇ϕ ·www]cVc = −
∑
p

[ϕ∇∇∇ ·www]PV
p (76)

where the summation in the left and the right hand side are performed over the cells c and vertices p in $(t) respec-
tively, V p denotes the volume of the dual mesh associated with the vertex p and the operator [ ]p is the dual mesh
based volume averaged quantity. To be more specific, [ ]p indicates an ”operation” over quantities stored at the cell
center (of the primal mesh) to yield an “operator“ centered at the vertex for the corresponding dual mesh (common to
staggered grid methods). Since the quantity of interest is the gradient of scalar operating from vertices to cell [∇∇∇ϕ]c,
the prime operator in this case is the discrete divergence of vector [∇∇∇ · www]p operating from cells to vertex. To this
degree, it is first required to devise a technique to evaluate the prime operator [∇∇∇ · www]p operating on the dual mesh.
In retrospect of Eq (43) and the subsequent steps leading to Eq (58), choosing www to be uuu and performing the sequel
of steps for the volume of dual mesh (written as a function of centroid coordinates i.e. V p(xxxc)) lead to the following
expression for discrete divergence of vector [∇∇∇ ·www]p:

[∇∇∇ · uuu]p =
∑
C (p)

 1
(2+β) (2Rc +Rc

+

) 1
2 l

(c,c+)nnn
(c,c+)
p +

1
(2+β) (2Rc +Rc

−
) 1

2 l
(c,c−)nnn

(c,c−)
p

 · uuuc (77)

=
∑
C (p)

(
aaac

−

p + aaac
+

p

)
· uuuc (78)

=
∑
C (p)

aaacp · uuuc (79)

where l(c,c
±) denote the length of the edges in the dual mesh and nnn(c,c±)

p are the normals to these edges (Figure 3).
Using the identity listed in Eq (56), the following can be deduced for a subcell Ψp

c :

( 2Rc +Rc
+

)
1

2
l(c,c

+)nnn(c,c+)
p + (2Rc +Rc

−
)
1

2
l(c,c

−)nnn(c,c−)
p = 6βApcrrr −

( 2Rp +Rp
+

)
1

2
l(p,p

+)nnn(p,p+)
c + (2Rp +Rp

−
)
1

2
l(p,p

−)nnn(p,p−)
c (80)
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i.e.

aaacp = 6βApcrrr − aaapc (81)

Therefore, the discrete divergence operator in the dual mesh is given as

[∇∇∇ · uuu]p =
1

2(2 + β)V p

∑
C (p)

{
6βApcṘc −

[
(2Rp +Rp

+

)l(p,p
+)nnn

(p,p+)
c +

(2Rp +Rp
−

)l(p,p
−)nnn

(p,p−)
c

]
· uuuc

}
(82)

Inserting Eq (82) in Eq (76) and comparing the coefficients of uuuc, the components (G(x,scalar),G(y,scalar),G(r,scalar))
of the discrete gradient of scalar operator can be identified:

G(x,scalar) = Gx,vector =
1

2(2 + β)Vc

∑
P(c)

 (2Rp +Rp
+

)l(p,p
+)n

(p,p+)
(c,x) +

(2Rp +Rp
−

)l(p,p
−)n

(p,p−)
(c,x)

 (83)

G(y,scalar) = Gy,vector =
1

2(2 + β)Vc

∑
P(c)

 (2Rp +Rp
+

)l(p,p
+)n

(p,p+)
(c,y) +

(2Rp +Rp
−

)l(p,p
−)n

(p,p−)
(c,y)


G(R,scalar) = GR,vector =

6β

2(2 + β)Vc

∑
P(c)

Apc (84)

The consistency of the discrete gradient operator can be ascertained by confirming that, for a constant scalar field ϕ,
the discrete divergence of the scalar reduces to zero. Substituting ϕc = ϕp = ϕ in the discrete gradient operator, the
following can be inferred:

[∇∇∇ϕ]c =
ϕ

2(2 + β)Vc

∑
P(c)

[
(2Rp +Rp

+

)l(p,p
+)nnn

(p,p+)
c +

(2Rp +Rp
−

)l(p,p
−)nnn

(p,p−)
c

]
− ϕ

2(2 + β)Vc

∑
P(c)

6βApc

=
6βϕ

2(2 + β)Vc
Ac −

6βϕ

2(2 + β)Vc
Ac = 0

This is an important property for flows with constant pressure i.e. the gradient of pressure goes to zero, ensuring that
no numerical inaccuracies are introduced.

Remark 2. The method outlined in this section is generic and can be used to determine other operators. For instance,
the same approach could be adopted to determine the discrete gradient operator for vectors. In this case, the chosen
prime operator is [∇∇∇div www]c to yield [∇∇∇grad scalar]p. Then the adjointness property between the gradient of scalars
with the gradient of vectors ∫

V (t)

ϕ∇∇∇uuudV =

∫
∂V (t)

ϕuuu×nnnRdl −
∫

V (t)

uuu · ∇∇∇ϕdV (85)

can be exploited to result in the expressions given in Eqs (64)-(67).

Remark 3. It is important to point out the similarity between the expression given in Eqs (83)-(84) and what is reported
in [17]. In [17], the discrete gradient operator for scalar was determined using the Green’s integral identity. In contrast,
the discrete expression presented above is obtained by satisfying important vector identities in the discrete model.

4.3.4. Discrete Operator for Divergence of Tensors
The task set forth in this section is to derive the discrete expression for the divergence of tensor operator. It is

important to endure this analysis for the following two reasons:

• To establish the compatibility between the form of the gradient of vector operator presented in section 4.3.2 and
the total energy conservation principle (Eq (29)).
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• To assert the formulation for the gradient of scalar and vector operators. It is recalled here that the formulation
for the gradient of vector operator formulated in section 4.3.2 has not been reported in the past and therefore it
is imperative to verify the same.

In [14], several vector identities were employed to determine the the discrete divergence of stress tensor operator.
This was deliberately done to circumvent from using the gradient of vector (in [14], the gradient of vector operator was
derived from the divergence of stress tensor operator) as the prime operator. In this work, a more direct approach is
adopted. The discrete divergence of stress tensor operator is determined by enforcing the adjointness property between
the gradient and divergence operators. In order to satisfy the conservation of total energy principle, the integral form
of the vector identity (Eq (11)) is invoked as the commencing point:∫

V (t)

σσσ∇∇∇ ·wwwdV =

∫
∂V (t)

nnn · σσσ ·wwwRdl −
∫

V (t)

(∇∇∇ · σσσ) ·wwwdV (86)

The above integral form reduces to the following in the discrete space (with vanishing boundary integral terms [14]):∑
c

wwwc · [∇∇∇ · σσσ]cVc = −
∑
p

[∇∇∇www]p : σσσpV p (87)

Setting www = uuu and in combination with the analysis presented in sections 4.3.2 & 4.3.3, the gradient of vector in the
dual mesh can be expressed as:

[∇∇∇uuu]pV
p =

∑
C (p)


−apcxuc −0.5

(
apcyuc + apcxvc

)
0

−0.5
(
apcyuc + apcxvc

)
−apcyvc 0

0 0 6βApup

 (88)

where Eq (81) is used in deriving the above expression. Substituting this expression in Eq (87) and performing the
summation over the vertices of the mesh yields:∑

p

[∇∇∇uuu]p : σσσpV p = −
∑
c

∑
P(c)

{(
apcxσ

p
xx + apcyσ

p
xy

)
uc +

(
apcxσ

p
xy + apcyσ

p
yy

)
vc + 6βAcσzzcuc

}
(89)

where the summation in the left hand side of the above expression is shifted to the primal mesh and the last term
is a consequence of the conservation of stress volume work (

∫
$(t)

σσσ : uuudV =
∑
c σσσc : uuucVc =

∑
p σσσ

p : uuupV p).
Comparing the coefficients of velocity components between the left and the right hand side leads to the final expression
for the divergence of tensor operator:

[∇∇∇ · σσσ]c =
1

Vc

∑
P(c)

{(
apcxσ

p
xx + apcyσ

p
xy

apcxσ
p
xx + apcyσ

p
yy

)
+ β

(
APc σzzc

0

)}
(90)

The consistency of the discrete expression presented above can be established by comparing it with the continuum
analog. The form of the divergence operator in Eq (90) is exactly the same as the corresponding continuum expression
displayed in Eq (10). It it important to point out that the discrete expression (Eq (90)) is derived without referring to
Eq (10). In contrast to existing FV, FD and FE schemes, wherein the integral form of Eq (10) is utilized for discretizing
the governing equations, the current formulation is constructed by infusing the fundamental vector identities and
conservation principles in the discrete expression. The similarity between Eqs (90) & (10) also confirms the validity
of the discrete expression for the gradient of vector operator. Furthermore, the compatibility with gradient of scalar
operator can be established by setting σσσ = −ϕIII to recover:

D(x,tensor) = Gx,scalar

D(y,tensor) = Gy,scalar

D(r,tensor) = Gr,scalar (91)
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Remark 4. In the derivation presented above, an implicit assumption is made regarding the existence of tensor field
at the quadrature points i.e. at the vertices of the mesh. Moreover, the degree of freedom in choosing the quadrature
points is restricted to vertices because of the choice of the quadrature points for the prime operator, i.e. the divergence
of vector operator. Alternatively, it can be concluded that the vector identities and discrete conservation laws hold
true as long as the quadrature points for scalars, vectors and tensors coincide. A concrete proof for this claim can be
provided by performing a rigorous analysis on the discrete curl operator. Since

[∇× [∇ ·www]c]p = [∇× [∇ ·www]p]c = 0 and (92)

[∇× [∇ · σσσ]c]p =
[
∇× [∇ · σσσ]p

]
c

= 0, (93)

can be shown to be true when the quadrature points for vectors and tensors coincide [19].

4.3.5. Discrete Expressions for the Plane Strain Case
The discrete expressions for the divergence and gradient operators can be recovered for the plane strain assumption

by setting β = 0. With β = 0, Eq (44) reduces to

Ac =
1

2

∑
P(c)

(xxxp
−
× xxxp) · kkk. (94)

Consequently, the GCL for the plane strain assumption reduces to

1

Ac

dAc
dt

= ∇∇∇Ac(xxxp) · uuup ∀ p ∈ P(c) (95)

=
∑
P(c)

ãaa
p
c · uuup (96)

where

ãaa
p
c =

1

2

(
ãaa

(p,p+)
c + ãaa

(p,p−)
c

)
(97)

ãaa
(p,p±)
c = l(p,p

±)nnn(p,p±)
c (98)

Therefore, the corner area vector for the axisymmetric case can be expressed in terms of the half-edge area vectors
corresponding to the plane strain assumption as follows:

aaapc =
1

2

(
R(p,p+)
c ãaa

(p,p+)
c +R(p,p−)

c ãaa
(p,p−)
c

)
(99)

The expressions for the discrete divergence and gradient operators for the plane strain assumption can be obtained by
imposing β = 0 on the corresponding expressions for the axisymmetric case:

G̃x,scalar|vector = D̃x,scalar|vector =
1

2Ac

∑
P(c)

ãaa
(p,p−)
c,x + ãaa

(p,p+)
c,x (100)

G̃y,scalar|vector = D̃y,scalar|vector =
1

2Ac

∑
P(c)

ãaa
(p,p−)
c,y + ãaa

(p,p+)
c,y (101)

where

ãaa
(p,p±)
c,x = l(p,p

±)n(p,p±)
c,x (102)

ãaa
(p,p±)
c,y = l(p,p

±)n(p,p±)
c,y (103)
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4.3.6. Discrete Operators for the Area Weighted Scheme
The discrete operators discussed thus far are pertinent to the control volume formulation. However, as it has been

mentioned before, what is actually solved are the area weighted representation of the governing equations. Therefore,
it is necessary to formulate the discrete version corresponding to the area weighted representation of the divergence
and gradient operators. This constitutes the topic of discussion for this section.

Defining an average radius Rc as the ratio between the volume and planar area of the cell,

Rc =
Vc
Ac

(104)

the GCL for the area weighted formulation can be re-written as:

dVc
dt

= Rc
dAc
dt

+Ac
dRc
dt

(105)

= Rc
∑
P(c)

ãaa
p
c · uuup + βAcuc (106)

where Eq (96) is used for deriving the last expression. uc in the above equation is the volume averaged horizontal
component of the velocity vector for the cell c. Analogous to Eq (56), the following identity can be established for a
constant velocity field uuup = uuuc = C:

Rc
∑
P(c)

ãaa
p
c = −βAcrrr (107)

Utilizing the expression given in Eq (106), the area weighted representation of the discrete divergence operator
for (velocity) vectors can be written as

[∇∇∇ · uuu]
AW
c =

1

Vc

dVc
dt

=
1

Ac

∑
P(c)

ãaa
p
c · uuup + β

uc
Rc

(108)

Similar to the derivation presented in section 4.3.2, the expression for the area weighted formulation for the discrete
gradient of vectors can be obtained by comparing the trace of the velocity gradient tensor and the divergence of
velocity vector:

tr
(

[∇∇∇uuu]
AW
c

)
= [∇∇∇ · uuu]

AW
c (109)

Substituting the expression from Eq (108),

tr
(

[∇∇∇uuu]
AW
c

)
=

1

Ac

∑
P(c)

ãaa
p
c,xu

p +
1

Ac

∑
P(c)

ãaa
p
c,yv

p + β
uc
Rc

(110)

results in the following expression for the discrete velocity gradient operator:

[∇∇∇uuu]
AW
c =

Rc
Vc

∑
P(c)

ãaa
p
c ⊗ uuup +

β

Rc

 0 0 0
0 0 0
0 0 uc

 (111)

As a consequence of the area weighted expressions for divergence and gradient of vectors, and following the steps
outlined in section 4.3.3, the discrete expression for the gradient of scalar can be expressed as:

[∇∇∇ϕ]
AW
c =

1

Ac

∑
P(c)

ãaa
p
c,xϕ

p +
1

Ac

∑
P(c)

ãaa
p
c,yϕ

p (112)

The only operator that is left to be determined is the discrete divergence of tensor operator. In contrast to the
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control volume formulation for the divergence of tensor operator (section 4.3.4), the analysis for determining the
discrete area weighted analog is more involved. Similar to the discussion presented in section 4.3.4, the discrete
identity displayed in Eq (87) is used as the starting point. The area weighted operator for the divergence of vector
formulated with respect to the dual grid reads as:

[∇∇∇ ·www]AWp V p = Rp
∑
C (p)

ãaa
c
p ·wwwc + βwpAp where (113)

ãaa
c
p = ãaa

(c,c−)
p + ãaa

(c,c+)
p (114)

ãaa
(c,c±)
p = l(c,c

±)nnn(c,c±)
p (115)

where Rp = Ap

V p . Considering the subcell Ψp
c and defining a pseudo volume V̂ pc = RpApc , the rate of change of

volume can be expressed as

dV̂ pc
dt

= Rp
dApc
dxxx

dxxx

dt
+
dRp

dt
Apc (116)

= Rp(ãaa
c
p · uuuc + ãaa

p
c · uuup) + βupApcrrr (117)

Hence, for a constant velocity field, the identity in Eq (107) reduces to

Rpãaa
c
p = −Rpãaapc − βApcrrr (118)

Setting www = uuu and substituting the above expression, the discrete gradient and divergence of vector operators with
respect to the dual grid can be re-written as:

[∇∇∇ · uuu]AWp V p = −
∑
C (p)

(Rpãaa
p
c + βApcrrr) · uuuc + βup

∑
C (p)

Apc (119)

[∇∇∇uuu]AWp V p = −
∑
C (p)


(
Rpãaa

p
cx + βApc

)
uc 0.5Rpãaa

p
cyuc + 0.5

(
Rpãaa

p
cx + βApc

)
vc 0

0.5Rpãaa
p
cyuc + 0.5

(
Rpãaa

p
cx + βApc

)
vc Rpãaa

p
cyvc 0

0 0 −Apcup


(120)

Therefore, the scalar product between the stress and velocity gradient tensor can be expressed as

[∇∇∇www]p : σσσpV p = −Rp
∑
C (p)

{(
ãaa
p
cxσ

p
xx + ãaa

p
cyσ

p
xy

)
uc +

(
ãaa
p
cxσ

p
xy + ãaa

p
cyσ

p
yy

)
vc + βApc

(
σpxxuc − upσpzz + σpxyvc

)}
(121)

Using the fact that
∑
p V

p =
∑
c Vc, an expression for Rp in terms of Rc can be obtained as follows:∑

c

Vc =
∑
c

Rc
∑
P(c)

Apc (122)

=
∑
p

∑
C (p)

RcA
p
c (123)

=
∑
p

RpAp (124)

Rp =
1∑

C (p)A
p
c

∑
C (p)

RcA
p
c (125)
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Performing a global sum over the vertices of the mesh, the following identity can be established:∑
p

Rp =
∑
p

1∑
C (p)A

p
c

∑
C (p)

RcA
p
c (126)

=
∑
c

Rc∑
P(c)A

p
c

∑
P(c)

Apc (127)

=
∑
c

Rc (128)

Substituting for Rp in Eq (121) and performing the sum over all vertices of the mesh yields:

∑
p

[∇∇∇www]p : σσσpV p =

∑
p

−1∑
C(p)A

p
c

(∑
C (p)RcA

p
c

)∑
C (p)

{(
ãaa
p
cxσ

p
xx + ãaa

p
cyσ

p
xy

)
uc +

(
ãaa
p
cxσ

p
xy + ãaa

p
cyσ

p
yy

)
vc

}
+

β
∑

C (p)

{
Apc
(
σpxxuc − upσpzz + σpxyvc

)}
(129)

Interchanging the summation from vertices to cell and using Eq (128) results in the following expression:

∑
p

[∇∇∇www]p : σσσpV p =
−
∑
cRc

∑
P(c)

{(
ãaa
p
cxσ

p
xx + ãaa

p
cyσ

p
xy

)
uc +

(
ãaa
p
cxσ

p
xy + ãaa

p
cyσ

p
yy

)
vc

}
+

β
∑

P(c)A
p
c (σpxx − σpzz)uc +

(
σpxyvc

) (130)

In the above equation, the following relation due to the definition of volume averaged quantity (Φc) is used:∑
c

ΦcAc =
∑
c

∫
Ac

ΦdA (131)

=
∑
p

∫
Ap

ΦdA (132)

=
∑
p

ΦpAp (133)

=
∑
c

∑
P(c)

ΦpApc (134)

Φc =
1

Ac

∑
P(c)

ΦpApc (135)

Therefore, employing Eq (87) and comparing the like terms, the discrete expression for the divergence of tensor is
obtained:

[∇∇∇ · σσσ]AWc =
Rc
Vc

∑
P(c)

(
ãaa
p
cxσ

p
xx + ãaa

p
cyσ

p
xy

ãaa
p
cxσ

p
xy + ãaa

p
cyσ

p
yy

)
+ β

Apc
Vc

(
σpxx − σpzz

σpxy

)
(136)

Alternatively, as a result of Eq (135), the above expression can be further simplified as follows:

[∇∇∇ · σσσ]AWc =
1

Ac

∑
P(c)

(
ãaa
p
cxσ

p
xx + ãaa

p
cyσ

p
xy

ãaa
p
cxσ

p
xy + ãaa

p
cyσ

p
yy

)
+

β

Rc

(
σxxc

− σzzc
σxyc

)
(137)

As in the case of the control volume formulation, the exact representation of the functional form of the continuum
expression given in Eq (9), in the discrete versions displayed in Eqs (136) & (137), is recognized. The discrete diver-
gence operator is derived without referring to the continuum equation. Furthermore, the consistency and compatibility
with the area weighted discrete gradient of scalar and vector operators is apparent.
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4.4. Uniqueness of Mimetic Formulations, Quadrature Points and the Discrete Conservation Laws

Formulation CV - Axisymmetric AW - Axisymmetric CV - Plane Strain
Summation 1

Vc

∑
P(c)

1
Vc

∑
P(c)

1
Ac

∑
P(c)

[∇∇∇ · uuu]c aaapc · uuup Rcãaa
p
c · uuup + βAcuc ãaa

p
c · uuup

[∇∇∇ϕ]c aaapcϕ
p
c −Apcϕc Rcãaa

p
cϕ

p
c ãaa

p
cϕ

p
c

[∇∇∇uuu]c

 (apcx −A
p
c)u

p apcyu
p 0

apcxv
p apcyv

p 0

0 0 Apcu
p

 Rcãaa
p
c ⊗ uuup + βAcucrrr ⊗ rrr ãaa

p
c ⊗ uuup

[∇∇∇ · σσσ]c aaapc · σσσpc −Apcσpzz Rcãaa
p
c · σσσpc + βAc

(
σxxc

− σzzc
σxyc

)
ãaa
p
c · σσσpc

Table 1: Summary of discrete gradient and divergence operators for the control volume and area weighted representations.

In the preceding sections, the discrete versions of the gradient and divergence operators that constitute the govern-
ing conservation laws are derived. A summary of the functional form of these operators is displayed in Table 1. As
mentioned before, existing cell-centered schemes proposed in [15, 16, 17, 19, 20] are constructed using the Green’s
integral identity, in combination with GCL, for approximating the discrete operators. Here, the mimetic theory is
invoked to demonstrate consistency and compatibility of such formulations with the continuum principles. When
Green’s integral identity is used for discretizing the governing conservation laws, there are no underpinning rules for
defining the quadrature points for integration. For instance, the quadrature points for the formulations presented in
[15, 16, 19, 20] lie at the vertices of the cell whereas in [17] the quadrature points are assumed to reside at the half-
edges. It is argued in [20], that in light of the importance in preserving the angular momentum conservation principle
(i.e. to ensure that the stress tensor remains symmetric), it is required to use the vertices as the quadrature points for
integration. As it is evident from the analysis presented in the previous sections, this claim can be substantiated using
the mimetic theory. In order for the compatibility and consistency conditions to remain valid it is found necessary
for the quadrature points for scalars, vectors and tensors to be coincident. Furthermore, since the kinematic condition
together with GCL constrains the functional form of the divergence operator, the quadrature points must be defined
at the vertices of the mesh. Nevertheless, both versions of the cell-centered formulations have been applied with
widespread success.

Examining Table 1, it can be inferred that the velocity field is distinctly defined at the quadrature points (vertices)
whereas the scalar and stress field are approximated at the vertex for a given cell (alternatively at the subcell) i.e. σσσpc as
opposed to σσσp. This is because, the kinematic condition demands a unique velocity field to be defined at the vertices.
Due to the lack of similar constraint(s) on the scalar and stress fields, there exist an additional degree of freedom in
defining these variables at the quadrature points. Nevertheless, since in the cell centered formulation the variables
are stored and evolved at the element centroid, the scalar, vector and tensor fields required to evolve the governing
equations must be suitably approximated at the vertices. As will be shown in the following section, the approximation
at the vertices are made by introducing additional constraints on the scalar/tensor quantities.

Utilizing the expressions from Table 1 and substituting in the governing equations, the evolution equations in the
discrete space are given as follows:

mc
duuuc
dt
− Rc

2

∑
P(c)

Rcãaa
p
c · σσσpc + βAc

(
σxxc

− σzzc
σxyc

)
= 0 (138)

mc
dEc
dt
− 1

2

∑
P(c)

aaapc · σσσpc · uuup = 0 (139)

mc

dSSSc
dt

+SSScΩΩΩc −ΩΩΩcSSSc −G
∑
P(c)

(
ãaa
p
c ⊗ uuup + uuup ⊗ ãaapc −

2

3
(uuup · ãaapc + βAcuc)III

) = 0 (140)

The governing equations presented above can be re-written in a compact form by introducing the corner traction
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Figure 4: The corner traction force vector fffpc is the sum of the half edge traction force vectors fff (p,p
±)

c . Also displayed in the figure are the corner

area vector aaapc and the traction force vector f̂ffpc = σσσp
c · aaapc such that f̂ffpc

?
= fffpc ; σσσp

c = σσσc(xxxc) for first-order and σσσp
c = σσσc(xxxp) for second-order

accuracy in space.

force vectors fffpc & f̃ff
p

c defined as:

fffpc = aaapc · σσσpc (141)

f̃ff
p

c = Rcãaa
p
c · σσσpc (142)

With the above definition for fffpc & f̃ff
p

c , the momentum and total energy equations can be expressed in the following
concise form:

mc
duuuc
dt
−
∑
P(c)

f̃ff
p

c + fffHOOP c = 0 (143)

mc
dEc
dt
−
∑
P(c)

fffpc · uuup = 0 (144)

In the above equations, the contribution due to the hoop stress term is included in the momentum equation:

fffHOOP c
= βAc

(
σxxc − σzzc

σxyc

)
(145)

= β
∑
P(c)

Apc

(
σxxc

− σzzc
σxyc

)
(146)

=
∑
P(c)

fffpHOOP c
(147)

where Eq (146) is a consequence of the definition of the volume averaged quantities. fffpHOOP c
in Eq (147) is the

subcell contribution of the hoop stress term. The representation of the subcell contribution of the hoop stresses will
be useful when the conservation properties are analyzed for the system of governing equations. The significance
of the formulation presented above is that the structure of the underlying gas dynamic solver is retained and the
material strength terms (corresponding to stress tensors) are infused in to the corner traction force vectors. Examining
Eqs (143), (144) & (140), the only unknowns that are yet to be determined are the corner traction force vectors f̃ff

p

c & fffpc

(or the half edge traction vectors f̃ff
(p,p±)

in the case of the formulation due to [17]) and the vertex velocity vectors uuup.
The unknowns are determined by invoking the total energy conservation along with the increase in entropy principle
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as elucidated in the following sections.

Remark 5. The governing equations corresponding to the formulation given in [17] take the form given below:

mc
duuuc
dt
− Rc

2

∑
P(c)

(
ãaa

(p,p−)
c · σσσ(p,p−)

c + ãaa
(p,p+)
c · σσσ(p,p+)

c

)
+ βAc

(
σxxc

− σzzc
σxyc

)
= 0 (148)

mc
dEc
dt
− 1

2

∑
P(c)

(
aaa(p,p−)
c · σσσ(p,p−)

c + aaa(p,p+)
c · σσσ(p,p+)

c

)
· uuup = 0 (149)

mc

dSSSc
dt

+SSScΩΩΩc −ΩΩΩcSSSc −G
∑
P(c)

(
ãaa
p
c ⊗ uuup + uuup ⊗ ãaapc −

2

3
(uuup · ãaapc + βAcuc)III

) = 0 (150)

In this case, the corner traction force vectors fffpc & f̃ff
p

c are defined as:

fffpc = R(p,p+)f̃ff
(p,p+)

c +R(p,p−)f̃ff
(p,p−)

c (151)

f̃ff
p

c =
Rc
2

(
f̃ff

(p,p+)

c + f̃ff
(p,p−)

c

)
where (152)

f̃ff
(p,p±)

c =
1

2
ãaa

(p,p±)
c · σσσ(p,p±)

c (153)

Therefore, with the above definitions the momentum and total energy equations can be expressed in the same form as
in Eqs (143) & (144). The unknowns in this case are the corner traction force vectors f̃ff

p

c and the half edge traction

vectors f̃ff
(p,p±)

, and the vertex velocity vectors uuup. Thus, the ability of the current formulation in reproducing existing
cell-centered schemes is evident.

4.4.1. Consequence of Conservation Laws
As mentioned before, the unknown corner traction force and vertex velocity vectors required to evolve the gov-

erning equations in time are determined by invoking the statements of conservation of momentum and total energy
in the discrete space. Following the arguments presented in [11, 12, 45] and adding the contribution from all cells
constituting the discrete space results in the following relations:

∑
c

mc
duuuc
dt

=
∑
c

∑
P(c)

(
f̃ff
p

c − fffHOOP c

) =
∑
p

∑
C (p)

(
f̃ff
p

c − fff
p
HOOP

) =
∑
p∈∂$

fffpbdry (154)

∑
c

mc
dEc
dt

=
∑
c

∑
P(c)

fffpc · uuup =
∑
p

uuup ·

∑
C (p)

fffpc

 =
∑
p∈∂$

fffpbdry · uuu
p (155)

where fffp
HOOP

is an approximation of the hoop stress contribution at the vertices and fffpbdry is the external boundary
force that is defined on the vertices of the domain boundaries. It can be recognized that the final expressions in the
above equations are obtained by interchanging the summation between cells and vertices. The outer summation in the
last expressions is performed over all vertices p ∈ $(t). Recalling the statements of conservation of momentum and
total energy [11, 12, 17], the following can be inferred for the vertices belonging to the interior of the domain:∑

C (p)

f̃ff
p

c = fffpHOOP (156)

∑
C (p)

fffpc = 0 (157)
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where Eq (156) is a consequence of momentum conservation and Eq (157) is the consequence of energy conservation.
Eq (157) is the statement of compatibility with total energy conservation, analogous to the compatible staggered
grid formulations [11, 12]. In other words, Eq (157) states that the sum of the corner traction force vectors in the
interior vertices is null. Eqs (157) & (156) serve as constraints that must be satisfied by the not yet determined
corner traction force vectors f̃ff

p

c & fffpc . For the plane strain condition, fffpHOOP = 0 and therefore Eq (156) reduces to
Eq (157). However unlike in the plane strain case, as it has been pointed out in [11, 12, 17], enforcing both constraints
simultaneously is not feasible for axisymmetric geometries. Therefore, similar to the compatible formulation [11, 12],
the constraint due to the total energy conservation is utilized in determining the corner traction force vectors f̃ff

p

c & fffpc .
The condition in Eq (157) can be viewed as a sufficient condition for determining the corner traction force vectors.
At this juncture, it is worth pointing out that neither such constraints are derived for the vertex velocity vectors uuup nor
condition(s) relating fffpc anduuup are established. The kinematic condition is the only other constraint foruuup. In essence,
Eq (157) indicates that the conservation of total energy is trivially satisfied for any arbitrary uuup. Therefore, in order to
determine a physically meaningful and geometrically (GCL) consistent velocity field uuup, an additional constraint in
the form of increase in entropy principle (and consequently dissipation of internal energy to kinetic energy condition)
is invoked. This constitutes the topic of discussion for the remaining part of this section.

4.4.2. Riemann Solver for Determining the Corner Traction Vectors
In the preceding section, constraints that must be enforced on the corner traction force vectors were derived. How-

ever, such conditions do not exist for the vertex velocity vectors. Therefore, it is unclear how the unknown quantities
can be evaluated while simultaneously imposing the aforementioned constraints on the corner traction force vectors.
The task set forth in determining the unknown corner traction force and vertex velocity vectors can be immensely
simplified if a relation between the two quantities can be established. Traditionally, this task is accomplished by relat-
ing the two unknown vectors via viscosity/dissipation models. The purpose of this section is to formulate a viscosity
model which in combination with the constraints introduced in the preceding section yields a closed form solution for
the unknown vectors.

It is recognized that a traction force vector f̂ffpc can be computed at each vertex p ∈ P(c) such that

f̂ffpc = σσσc · aaapc (158)

f̂ffpc is not always equal to the corner traction force vector fffpc , particularly in the presence of shocks and other discon-
tinuities (Figure 4). In the absence of discontinuities, the equality of the two traction forces can be safely assumed.
Typically, Riemann problems are solved to automatically determine the jump in the force vectors. Therefore, follow-
ing the conventional approach, a Riemann problem is erected at each vertex to determine the jump:

δfffpc = fffpc − f̂ff
p
c (159)

Solution to the Riemann problem are generally of the form [46]:

δfffpc = ΘΘΘp
cδuuu

p
c (160)

where
δuuupc = uuup − uuuc (161)

is the jump in velocity across the discontinuity and ΘΘΘp
c is the viscosity tensor, that ensures proper dissipation of

energy within the discontinuity. The matrix ΘΘΘp
c can also be viewed as a transformation matrix that rotates δfffpc to be

aligned with δuuupc and vice-versa. As a result, the viscosity tensor must be non-singular in order to permit the inverse
transformation. As will be shown later, the transformation expressed in Eq (160) will satisfy the requirement imposed
by the second law of thermodynamics. At this point, the existence of ΘΘΘp

c is merely assumed and the conditions for its
definition will be discussed by revisiting the total energy equation and increase in entropy principle.
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4.5. Consequence of Second Law of Thermodynamics - The Statement of Increase in Entropy Principle

Following the analysis presented in [20] and inserting the expressions for fffpc & uuup (Eqs (159) & (161)) in the total
energy equation (Eq (144)) yields:

mc
dEc
dt

=
∑
P(c)

(f̂ffpc + δfffpc) · (uuuc + δuuupc)

=

∑
P(c)

fffpc · uuuc

+

∑
P(c)

f̂ffpc · δuuupc

+

∑
P(c)

δfffpc · δuuupc

 (162)

where the term in the first parenthesis, in the Right Hand Side (RHS) of Eq (162), corresponds to the evolution equation
for kinetic energy. This term, in turn, is obtained by the dot product between uuuc and the momentum equation:

mcuuuc ·
duuuc
dt

=
∑
C (p)

fffpc · uuuc − βAcσzzcuc. (163)

It is important to point out that the divergence operator utilized in the above equation corresponds to that of the control
volume representation of the divergence of stress tensor. Subtracting the evolution equation for kinetic energy from
the total energy equation, an evolution equation for internal energy can be readily obtained:

mc
dec
dt

=

∑
P(c)

f̂ffpc · δuuupc

+

∑
P(c)

δfffpc · δuuupc

+ βAcσzzcuc (164)

As noted in [20], the advantage of computing internal energy through an evolution equation of the form shown above
is that the round off numerical errors that often results in negative internal energy for kinetic energy dominated flows
can be entirely averted. Nevertheless, for the problems attempted in this work, it was found sufficient to compute
internal energy from the total energy update even for flows that are primarily driven by initial kinetic energy of the
system.

According to Gibbs relation, the statement of thermodynamic consistency can be written as [25]:

mcTc
dsc
dt

= mc

(
dec
dt
− σσσc : DDDc

)
(165)

where sc & Tc denote the volume averaged entropy and temperature of the cell c. The representation of stress power
given above can be deduced using the vector identity expressed in Eq (11) as follows:

σσσc : DDDc = ∇∇∇ · (σσσuuu)− uuu · (∇∇∇ · σσσ) (166)

=
1

Vc

∑
P(c)

f̂ff
p

c · uuup − uuuc ·
∑
P(c)

f̂ff
p

c + βAcσzzcuc

 (167)

=
1

Vc

∑
P(c)

f̂ff
p

c · δuuupc + βAcσzzcuc

 (168)

Substituting the expressions for internal energy and stress power in Eq (165), the rate of change of entropy of the
system can be written as

mcTc
dsc
dt

= δfffpc · δuuupc (169)
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This equation can be simplified by incorporating the solution from Riemann problem (Eq (160)) to yield:

mcTc
dsc
dt

=
∑
P(c)

δfffpc · δuuupc =
∑
P(c)

(ΘΘΘp
cδuuu

p
c) · δuuupc (170)

Therefore, for any positive semi-definite matrix ΘΘΘp
c (for a detailed proof the reader is referred to [47]), the following

inequality holds true:

mcTc
dsc
dt

=
∑
P(c)

(ΘΘΘp
cδuuu

p
c) · δuuupc ≥ 0 (171)

Thus the statement of thermodynamic consistency condition serves as an additional constraint for determining the vis-
cosity tensor ΘΘΘp

c . The expressions for determining the vertex velocities can be obtained by combining Eqs (157) & (160)
to yield:

ΘΘΘpuuup = −

 ∑
C (p) ∀ p3∂$

(
f̂ffpc −ΘΘΘp

cuuuc

) (172)

where ΘΘΘp =
∑

C (p) ΘΘΘp
c . Once the vertex velocities uuup are computed, Eq (160) can be utilized to determine the corner

traction force vector fffpc . Therefore, the unknowns that are yet to be determined are the corner traction force vector f̃ff
p

c

required to evolve the governing equation and the viscosity matrix ΘΘΘp
c

Remark 6. It is worth mentioning that, in the analysis presented above, the control volume formulation of the mo-
mentum equation (Eq (163)) is employed instead of the area-weighted counterpart. This is a well known source of
error for finite-volume Lagrangian schemes formulated in cylindrical coordinate systems. A detailed discussion on
the consequence of the above formulation and the importance of preserving symmetry can be found in [10, 48, 17], in
the context of gas dynamics schemes. It is recognized here that the analysis presented in [10, 48, 17] can be naturally
extended to the formulation considered in this work.

4.5.1. Determining the Unknowns
As shown in the previous section, the viscosity matrix is related to the corner traction force vector fffpc and the vertex

velocity vector uuup. Determination of the viscosity matrix will lead to the deduction of unique nodal force and velocity
vectors. However, there is another quantity, namely the corner traction force vector f̃ff

p

c , that needs to determined as
demanded by the momentum evolution equation. Thus in order to complete the the analysis, a relationship between f̃ff

p

c

and ΘΘΘp
c has to be established. Recalling the definition of fffpc from Eq (141) and substituting the same in the definition

of the Riemann problem displayed in Eq (160), the following relation can be established:

fffpc =
1

2

(
R(p,p+)
c ãaa

(p,p+)
c +R(p,p−)

c ãaa
(p,p−)
c

)
· σσσpc =

1

2Rc

(
R(p,p+)
c f̃ff

(p,p+)

c +R(p,p−)
c f̃ff

(p,p−)

c

)
(173)

In contrast to the formulation presented in [17], it is important to recognize that the half-edge traction vectors (f̃ff
(p,p±)

c )
are projections of a single stress-tensor σσσpc defined at each subcell. Therefore, the following can be inferred by solving

a Riemann problem for the half-edge traction vectors f̃ff
(p,p±)

c :

f̃ff
(p,p±)

c = Rcãaa
(p,p±)
c · σσσc +RcΘΘΘ

(p,p±)
c δuuupc (174)

Thus, once the expression for the viscosity matrix ΘΘΘ
(p,p±)
c is determined, the unknown quantities (including the corner

traction force vectors f̃ff
(p,p±)

c ) can be easily computed with the following assumption implicitly implied:

ΘΘΘp
c = ΘΘΘ(p,p+)

c + ΘΘΘ(p,p−)
c (175)
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As pointed in [47], several choices exist that could be used for determining the viscosity matrix. Potentially, any
non-singular square matrix (2 × 2 in two-dimensions and 3 × 3 in three-dimensions) that is positive semi-definite
can be used to enforce the transformation expressed in Eq (160). Existing viscosity models can be classified into
vertex or edge viscosity models, based on the direction which the viscosity matrix is aligned. These viscosity models
are summarized in Table 2. Different flavors of cell-centered formulations can be recovered by varying the viscosity

Viscosity model Citation Expression

Edge viscosity [17] ΘΘΘ
(p,p±)
c = Z

(p,p±)
c ãaa

(p,p±)
c ⊗nnn(p,p±)

c

Vertex viscosity [15, 16] ΘΘΘ
(p,p±)
c = 1

2Z
(p,p±)
c ãaa

(p,p±)
c ⊗

(
nnn

(p,p+)
c +nnn

(p,p−)
c

)
Vertex viscosity [20] ΘΘΘ

(p,p±)
c = Z

(p,p±)
c δuuupc · ãaa

(p,p±)
c III

Table 2: Summary of existing viscosity matrix for cell-centered formulations. The expression δuuupc = uuup − uuuc is velocity difference vector and

Z
(p,p±)
c = ρccc is the acoustic impedance factor. When Z(p,p±)

c = ρc(cc +Γc|(uuup−uuuc) ·nnn(p,p±)
c |), the impedance model due to the Riemann

solver proposed in [46] can be obtained.

model. Examining the table, the issue with the viscosity model proposed in [15, 16] can be identified. The viscosity
matrices ΘΘΘ

(p,p±)
c , in this case, is not symmetric. However, the ΘΘΘp

c , which is the sum of these matrices, is a symmetric
and positive semi-definite matrix. Hence, this model is not suitable for the applications of interest to this work. The
edge viscosity model proposed in [17] requires the definition of half edge stress tensors and therefore shifts quadrature
points to half edges. Consequently, the compatibility properties may not be readily extended. Therefore, in this work,
a physically consistent viscosity tensor that is proposed in [20] is employed. The viscosity tensor is constructed from
the vector product between the velocity difference vector δuuupc and corner area vector aaapc . As a result, the viscosity

tensor reduces to a diagonal matrix and hence requires no matrix inversion. Once the half edge traction vectors f̃ff
(p,p±)

c

are computed, the corner traction force vectors can be evaluated.

5. High-Order Extension

5.1. Spatial Accuracy

The solution strategy outlined in the preceding sections made no recourse to the accuracy of the scheme. To be
more specific, Eq (172) can be re-written as

ΘΘΘpuuup = −

 ∑
C (p) ∀ p3∂$

(
f̂ffpc(xxx)−ΘΘΘp

cuuuc(xxx)
) (176)

If f̂ffpc(xxx) = f̂ffpc(xcxcxc) & uuuc(xxx) = uuuc(xxxc), then the resulting solution corresponds to first-order accurate solution in
space. Instead, if these quantities were evaluated at xxx = xxxp, then the accuracy of the solution corresponds to the order
of accuracy with which the quantities are reconstructed within the cell. Since linear elements are employed in this
work, the accuracy of the reconstruction procedure is limited to second-order. Following [49], high-order accuracy
is achieved by performing a Taylor series reconstruction within the cell, i.e. for any quantity ΦΦΦ ∈ [ρ,uuu, e, P,SSS], the
following statement for reconstruction is implied:

ΦΦΦ(xxx) = ΦΦΦc + (xxx− xxxc) · (ψc∇∇∇ΦΦΦ) (177)

where∇∇∇ΦΦΦ is the gradient of the quantity ΦΦΦ and ψc is the slope limiter [31]. Traditionally, the gradient of scalar, vector
and tensor quantities, required for the reconstruction procedure, are evaluated using standard techniques such as least
squares [50, 51] or Green’s integral theorem [25, 21]. However, in this work, a new gradient estimation technique
based on mimetic formulation is proposed. Furthermore, a new physics-based limiter schemes for vectors and tensors
is also proposed.
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5.1.1. Mimetic Gradient Estimation Technique
In line with the central of theme of this work, a technique based on mimetic formulation for computing gradients

of scalar, vector and tensor quantities is proposed. Since mimetic formulation preserves the fundamental identities
of vector/tensor calculus in the discrete space, the gradients estimated using mimetic formulation may not introduce
spurious modes/vortices that are otherwise not filtered by the limiter schemes. Furthermore, the numerical study
conducted in this work indicate that existing techniques such as the least squares, do not perform adequately when the
evolving mesh becomes skewed. For problems that are driven by the initial kinetic energy of the system, it may not
be entirely possible (without mesh optimization) to not permit meshes with poor quality. Therefore, it is important to
formulate a gradient estimation technique, preferably based on mimetic formulation, that is robust and independent of
the quality of the underlying evolving mesh.

Recalling from section 4.3, the quadrature points for discrete divergence and gradient operators reside at the mesh
vertices. Thus, in order to employ the mimetic theory for evaluating gradients, it is first necessary to design a linearity
and bound preserving ”lifting” procedure, for interpolating variables from the cell centers to the vertices of the mesh.
At any arbitrary vertex p in the mesh, such a procedure can be defined by considering the cells c ∈ C (p). Therefore,
to evaluate the quantity ΦΦΦp at the vertex p, a convex hull for the points c ∈ C (p) is defined as follows:

ΦΦΦp = αcΦΦΦc ∀ c ∈ C (p)W (p) (178)

where

αc ∈ R, αc > 0,
∑

c ∈ C (p)

αc = 1 (179)

The weights αc, employed in Eq (178), can be chosen in several different ways. Some of the options that were
explored include the following:

αc ∈
[
mc,m

p
c , Vc, V

p
c , Ac, A

P
c , ρc, ρ

p
c ,
√
ρc &

√
ρpc
]

(180)

where mc, Vc, Ac, ρc denote the mass, volume, area and density of the cell and mp
c , V

p
c , A

P
c , ρ

p
c denote the mass,

volume, area and density of the subcell. For instance, an obvious choice for the weighting function is the mass
mc (mp

c ) of the cell (subcell). When αc = mc|mp
c , the remapping approach used in ALE methods [52] and the

interpolation strategy employed in mesh coarsening algorithms [53] are recovered. However, such an option was
found to be ineffective because the mass of the cell/subcell is a constant quantity and therefore does not reflect the
dynamics of the mesh. Alternatively, setting the weights αc = Vc|V pc , accommodated for mesh quality effects but
was found to be inaccurate near the axis of symmetry. Even the intermediate options, αc = ρc|ρpc or αc = Ac|Apc was
found to be inadequate. The two options that were found to be robust for several problems of interest to this work
include αc =

√
ρc|
√
ρpc . When αc =

√
ρc|
√
ρpc , Eq (178) resembles the multi-dimensional version of the Riemann

solver proposed in [54]. Thus, with αc =
√
ρc|
√
ρpc , the pressure, velocity and shear stress tensor are interpolated

at the vertices of the mesh using Eq (178). Once the flow quantities are projected to the vertices, the expression for
discrete gradient or divergence operator can be employed to determined the gradient∇∇∇ΦΦΦ.

5.1.2. Physics-Based Frame Invariant Limiter Schemes
Slope limiters are enforced to ensure monotonicity of the reconstructed field. Discretization schemes are particu-

larly sensitive to slope limiters and therefore special care must be exercised in devising appropriate limiter schemes.
In [31], frame invariant and spatial symmetry preserving limiter schemes for stress tensors were proposed and the
same is used in this work. In what follows, the limiter schemes for scalar, vectors and tensor variables are briefly
described.

Slope limiter for scalar variables is determined by enforcing the following monotonicity condition:

Φmin ≤ Φp ≤ Φmax (181)
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where

Φmin = min
n∈N (c)

(Φn,Φc) and Φmax = max
n∈N (c)

(φn, φc) (182)

and Φp denotes the reconstructed value at the vertex p ∈ P(c). The monotonicity criterion (Eq (181)) is applied to
yield:

ψpc = L

(
φmax − φc

(xxxp − xxxc) · ∇∇∇φ
, 1

)
if (xxxp − xxxc) · ∇∇∇φ > 0 (183)

ψpc = L

(
φmin − φc

(xxxp − xxxc) · ∇∇∇φ
, 1

)
if (xxxp − xxxc) · ∇∇∇φ < 0 (184)

where the function L (x) is either the Barth-Jespersen [50, 55, 56]

L (x) = min(x, 1.0) (185)

or the Venkatakrishnan [57]

L (x) = min

(
x2 + 2x

x2 + x+ 1
, 1

)
(186)

limiter function [58]. Consequently, the slope limiter ψc is defined as:

ψc = min
n∈P(c)

(ψpc , 1) (187)

The slope limiter defined for scalar variables cannot be applied to individual components of vector and tensor
fields. This is because, such component-wise limiters are frame dependent and do not preserve fundamental features
like rotational or planar symmetry [59, 31]. Furthermore, component-wise limiter schemes produce different results
for rotational and translation effects on the tensor field [58]. Lagrangian hydrodynamics are particularly sensitive to
these issues as the underlying moving mesh discretization schemes are already prone to symmetry violation. Hence,
the following approaches are adopted for limiting velocity vectors and shear stress tensors.

First, the slope limiter scheme for constraining shear stress tensor is presented. Following the analysis presented
in [31], an inequality for a linear function h =

√
J2 is used as the commencing point:

hmin − hc ≤ hpc − hc ≤ hmax − hc (188)

where J2 is the second invariant of the shear stress tensor. Noting the definition of second invariant Jp2 = 1
2SSS

p : SSSp

and combining with the expression for SSSp (Eq (177)), the following is obtained:

Jp2 =
1

2
(SSSc : SSSc + 2SSSc : δSSSpc + δSSSpc : δSSSpc) (189)

where

δSSSpc = (xxxp − xxxc) · ∇∇∇SSS (190)

Therefore,
hpc − hc = (αpc)

−1(SSSp +SSSc) : δSSSpc (191)

where αpc = hpc + hc is a positive quantity and consequently, the inequality in Eq (188) can be cast in the following
form:

αpc (hpc − hc) ≤ (SSSp +SSSc) : δSSSpc ≤ αpc (hmax − hc) (192)
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It is now possible to define a unique scalar slope limiter ψpcJ2
based on the invariant bounds as follows:

ψpcJ2
= L

(
hmax − hc
hpc − hc

)
if hpc − hc > 0 (193)

ψpcJ2
= L

(
hmin − hc
hpc − hc

)
if hpc − hc < 0 (194)

ψpcJ2
= 1 otherwise (195)

and consequently the slope limiter for the cell is determined as

ψcJ2
= min
p∈P(c)

ψpcJ2
(196)

As opposed to deducing a slope limiter matrix, a single scalar variable is determined for limiting the gradient of the
stress tensor. The slope limiter thus defined is guaranteed to ensure monotonicity, accuracy and preserve symmetry.
Since the slope limiter obtained above is a scalar variable, it is intrinsically frame invariant.

The slope limiter scheme formulated for velocity vector is a direct extension of the J2 based slope limiter designed
for stress tensor. Defining the linear field in Eq (188) as h =

√
2k, where k = 1

2uuu · uuu is the kinetic energy, the slope
limiter for velocity vector can be determined as follows:

ψpck = L

(
hmax − hc
hpc − hc

)
if hpc − hc > 0 (197)

ψpck = L

(
hmin − hc
hpc − hc

)
if hpc − hc < 0 (198)

ψpck = 1 otherwise (199)

and consequently the slope limiter for the cell is determined as

ψck = min
p∈P(c)

ψpck (200)

As it is evident, the slope limiter schemes defined above has close relevance to the underlying physics that is being
resolved. The slope limiter based on J2 scheme ensures that the reconstructed stress tensor satisfies the consistency
condition whereas the slope limiter for velocity vector preserves the extrema in the kinetic energy field. The Galilean
invariance of the limiting process follows directly from the construction procedure.

5.2. Temporal Accuracy
The evolution equations are advanced from time level n to (n + 1

2 ) using a forward Euler scheme followed by
a corrector step centered in time to determine the values at time level n + 1. The predictor and corrector steps are
computed in two sweeps as follows:

( )(n+ iter
2 ) = c1( )n + c2( )(n+ 1

2 ) + c3
∆t

2
F (n+ iter−1

2 ) (201)

where the coefficients c1, c2 & c3 take the values 1, 0 & 1 for the predictor sweep (iter = 1) and 1
2 ,

1
2 , & 1

2 for the
corrector sweep (iter = 2). F (n+ iter−1

2 ) denotes the fluxes evaluated at the cell faces/edges corresponding to the
preceding sweep.

6. Second-Order Predictor-Corrector Algorithm

To reduce the burden of algorithm development and facilitate the ease of code implementation, the summary of
steps to retain second-order accuracy in both space and time is given below. For the sake of clarity of the presentation,
the superscripts for source terms (RHS) associated with the preceding time steps (( )n for iter = 1 and ( )(n+ 1

2 ) for
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iter = 2) are dropped wherever possible.
DO iter = 1, 2

1. Gradients of the solution variables ΦΦΦ ∈ [uuu, P,SSS] are computed and piecewise monotonic linear reconstruction
of ΦΦΦ is performed:

ΦΦΦ(xxx) = ΦΦΦc + (xxx− xxxc) · (ψc∇∇∇ΦΦΦ) (202)

2. Utilizing reconstructed ΦΦΦ(xxx), the vertex velocity vector uuup
(n+ iter−1

2
)

is evaluated employing either an acoustic
or Dukowicz Riemann solver:

uuup
(n+ iter−1

2
)

= −ΘΘΘp−1

 ∑
C (p) ∀ p3∂$

(
f̂ffpc(xxx

p)−ΘΘΘp
cuuuc(xxx

p)
) (203)

where

f̂ffpc(xxx
p) = aaapc · σσσc(xxxp) (204)

σσσc(xxx
p) = SSSc(xxx

p)− P (xxxp)III (205)

3. Once the nodal velocities are computed, the corner traction force vectors (f̃ff
p(n+ iter−1

2
)

c , fffp
(n+ iter−1

2
)

c ) are eval-
uated as follows:

f̃ff
(p,p±)(n+ iter−1

2
)

c =
̂̃
fff

(p,p±)

c (xxxp) +
1

R(p,p±)
ΘΘΘ(p,p±)
c (uuup − uuuc(xxxp)) (206)

fffp
(n+ iter−1

2
)

c = R(p,p−)f̃ff
(p,p−)(n+ iter−1

2
)

c +R(p,p+)f̃ff
(p,p+)(n+ iter−1

2
)

c (207)

4. The position vectors of the vertices and consequently the Lagrangian mesh are updated by solving the kinematic
equation:

xxxp
(n+ iter

2
)

= c1xxx
pn + c2xxx

p(n+1
2
)

+ c3
∆t

2
uuup

(n+ iter−1
2

)

(208)

5. With vertex velocity and corner traction force vectors determined above, the governing equations are solved:

uuu
(n+ iter

2 )
c = c1uuu

n
c + c2uuu

(n+ 1
2 )

c + c3
∆t

2mc

∑
P(c)

f̃ff
p(n+ iter−1

2
)

c (209)

E
(n+ iter

2 )
c = c1E

n
c + c2E

(n+ 1
2 )

c + c3
∆t

2mc

∑
P(c)

fffp
(n+ iter−1

2
)

c · uuup
(n+ iter−1

2
)

(210)

e
(n+ iter

2 )
c = E

(n+ iter
2 )

c − 1

2
uuu

(n+ iter
2 )

c · uuu(n+ iter
2 )

c (211)

6. Volume and density of the cell are updated and subsequently pressure is computed using the equation of state:

V
(n+ iter

2 )
c = V (xxxp

(n+ iter
2

)

) (212)

ρ
(n+ iter

2 )
c =

mc

V
(n+ iter

2 )
c

(213)

P
(n+ iter

2 )
c = EOS(ρ

(n+ iter
2 )

c , e
(n+ iter

2 )
c ) (214)
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7. The stress evolution equation is solved to determine the predicted trial elastic state (SSS(n+ iter
2 )

tr,c ):

SSS
(n+ iter

2 )
tr,c = c1SSS

n
c + c2SSS

(n+ 1
2 )

c − c3
∆t

2

(
ΩΩΩ

(n+ iter−1
2 )

c SSS
(n+ iter−1

2 )
c −SSS(n+ iter−1

2 )
c ΩΩΩ

(n+ iter−1
2 )

c − 2GD̄DD
(n+ iter−1

2 )
c

)
(215)

8. J2 based von Mises plastic flow rule is enforced by radially re-scaling the stress components to lie on or within
the yield surface:

END DO

7. Numerical Examples

In this section, a set of benchmark examples are presented to demonstrate the performance and effectiveness of
the cell-centered scheme in accurately capturing the elasto-plastic response of solids. In essence, a hypo-elastic model
with realistic plastic flow material models (Eqs (C.1),(C.2) & (C.3)) are used and an iterative radial return algorithm
(section Appendix B) is performed to enforce the consistency condition. An equation of state of the Mie-Grüneisen
form is used for computing the pressure [39, 38]. The gradients for stress tensor, velocity and pressure are estimated
using the mimetic gradient evaluation technique presented in section 5.1.1. Unless otherwise stated, limiter schemes
presented in section 5.1.2 in combination with Venkatakrishnan limiter function [57] is used. For the unlimited
case, no limiter is applied for stress and velocity gradients. The results from current calculations are compared and
contrasted with the solutions computed using the following hydrocodes:

• FLAG - a well established staggered grid Lagrangian finite volume hydrocode developed at the Los Alamos
National Laboratory [11].

• ELAFINT-3D - a robust level set based multi-material Eulerian hydrocode developed in [39, 38]

• PAGOSA - an Eulerian hydrocode (Lagrangian hydrocode in combination with a remap to the initial grid)
developed at the Los Alamos National Laboratory [60].

Unless stated otherwise, similar mesh resolutions are employed for both the current and reference calculations.

7.1. Elastic Vibration of Beryllium Plate

Figure 5: Initial configuration of the two-dimensional beryllium plate.

The problem has been analyzed in [61]. This is a two dimensional problem comprising of a beryllium rectangular
plate of infinite extent, with no supports or constraints. The plate extends from -3.0 cm to +3.0 cm along the X-axis
and from -0.5 cm to +0.5 cm along the Y-axis (Figure 5). As shown in Figure 5, the centerline of the plate coincides
with the x-axis. The plate is prescribed with an initial velocity distribution as given below:

v(x, t) = Aω {c1 [sinh Ω (x+ 3) + sin Ω (x+ 3)] + c2 [cosh Ω (x+ 3) + cos Ω (x+ 3)]} sin(ωt) (216)

with initial velocity computed at t = 0. The plate, when subject to this initial velocity distribution, begins to oscillate
elastically. Following the analysis in [61], Ω, the first non-zero root of the frequency equation is determined as:

cosh 6Ω cos 6Ω = 1 (217)
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Solving for the above equation, the value for Ω is determined as:

Ω = 0.7883401241 cm−1 (218)

Similarly, for the given dimensions and material parameters

ρ = 1845 kgm−3, Yo = 1 Mbar, k = 1.18896 Mbar, E = 3.182656 Mbar, ν = 0.053896 (219)

of the bar, the constants c1, c2 and the angular frequency ω are determined as:

c1 = 56.63685154, c2 = 57.64552048, ω = 0.2359739922 µs−1, A = 0.004336850425 cm (220)

where k,E & ν are the bulk modulus, elastic modulus and Poisson’s ratio respectively and the parameter A is related
to the amplitude of the oscillation as:

A =
1

2

(
Ymax
c2

)
(221)

with Ymax denoting the maximum displacement in the vertical direction. The angular frequency is related to the
material parameters and Ω through the following equation:

ω = Ω2

√
E(∆y)2

12ρ(1− ν2)
(222)

where ∆y = 1 cm is the thickness of the plate. The yield stress for the material is set at a very high value so
that the plate oscillates elastically. The choice of yield model and the radial return algorithm for this problem is
inconsequential as the yield stress conditions are never reached and hence no plastic strain is incurred.

7.1.1. Comparison with FLAG - Structured Mesh Calculation
In Figure 6, results from the current calculations are displayed. The calculations presented in the figure are

obtained by computing on a Cartesian mesh with 100× 25 cells along the length and width of the plate. The shape of
the plate at different instants in time are compared with FLAG computations. Excellent agreement is noted between
the two calculations. Both FLAG and current calculations were performed on a structured Cartesian mesh with same
mesh resolution. The figure indicates that the plate oscillates elastically with no plastic deformation. The snapshots
shown in the figure correspond to one complete cycle of oscillation of the plate. The plate continues to oscillate with
insignificant amount of dissipation of energy. Mesh convergence study for this problem is presented in Figure 7. The
figure indicates that the solution is independent of the mesh resolution. The maximum and minimum amplitude of
oscillation is preserved throughout the computation. The plot for vertical velocity magnitude shown in Figure 7(b)
shows that the over-/under-shoots present in FLAG calculations are not present in the current calculations.

7.1.2. Comparison with FLAG and PAGOSA - Unstructured Mesh Calculations
In Figure 8, the computations are repeated on an unstructured, initially Voronoi mesh. In Figure 8(a), the mesh

at0 µs is shown. The configuration of the bar and the mesh along with the contours of velocity magnitude are shown
at different instants in time for one complete cycle. The figure also shows the configuration of the bar corresponding
to FLAG calculations computed on a structured Cartesian mesh. Except for minor discrepancy at 23 µs no visible
difference can be seen. The figure indicates that the effect of the underlying mesh is not negligible.In Figure 9, the
locus of the center of the bar and the history of vertical velocity are compared with FLAG and PAGOSA calculations.
The plots indicate that the unstructured mesh calculation is more dissipative than the corresponding structured mesh
computations. Moreover the trend in this case follows closely PAGOSA’s results. Although the extremum for the
velocity magnitude is well preserved (Figure 9(b)), the maximum and minimum amplitudes for vertical displacement
(Figure 9(a)) are smaller than FLAG’s predictions. History of energy conversion plotted in Figure 9(c) shows that the
total energy is well preserved as the kinetic energy is converted to internal energy back and forth as the plate oscillates
through its cycle.
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(a) 0 µs

(b) 8 µs (c) 15 µs

(d) 23 µs (e) 30 µs

Figure 6: Shape of the plate and contours of velocity magnitude at different instants in time for the elastic vibration of beryllium plate. Also shown
in the Figures is the shape of the bar from FLAG computations. Both current and FLAG computations were computed on a Cartesian structured
grid with same mesh resolution.
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(a) Vertical Displacement (b) Vertical Velocity Magnitude

Figure 7: Mesh convergence study and comparison with FLAG for the elastic vibration of beryllium plate - (a) Locus of vertical displacement of
the origin (center of the plate) (b) Magnitude of vertical velocity of the center of the plate for three different mesh resolutions

7.2. Incompressible Plastic Collapse of Spherical Beryllium Shell

Cylindrical and spherical collapse of Beryllium shell is discussed in this section. The problem has been discussed
at length in [62]. The initial configuration of the shell is displayed in Figure 10. The problem consists of a 2 cm thick
beryllium shell undergoing an incompressible plastic collapse. The inner and outer radius of the shell are set at 8 cm
and 10 cm respectively. For the cylindrical shell, a plane strain assumption is made. The initial velocity profile that
drives the shell is given below:

U(r) = −U0(r/Ri)
α (223)

where α = 1.0 for plane geometry (cylindrical case) and α = 2.0 for RZ geometry (spherical shell). The final
stopping radius and time are determined by the initial kinetic energy of the shell. These are summarized in Table 3
for both the cylindrical and spherical shell collapse. The computations for both cylindrical and spherical shell are

configuration U0 Final Stopping Radius (cm) Final Stopping Time (µ s)
Cylindrical 490.2 4 137
Spherical 673.4 3 100

Table 3: Analytical stopping radius and time for spherical and cylindrical collapse of beryllium shell

performed with the following material parameters:

ρo = 1845.0 kgm−3, Yo = 0.33Mbar,Go = 151Mbar

Co = 7998.0 ms−1, S = 1.124, γo = 1.16

The simulations are run upto a final time T = 200µs and the results from these computations are reported below.

7.2.1. Collapse of Cylindrical Beryllium Shell in an Arbitrary Polygonal Mesh
For the cylindrical collapse, U0 = 490.2 ms−1 and the calculations are performed with plane strain assumption.

Furthermore, the computations are performed a polygonal grid constructed from the dual of a grid with triangular
elements (Figure 11). The total number of polygonal elements are 10500 and these elements are randomly distributed
in the computational domain. The results from the current calculations are displayed in Figure 12. In Figure 12(a),
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(a) 0 µs

(b) 8 µs (c) 15 µs

(d) 23 µs (e) 30 µs

Figure 8: Shape of the plate and contours of velocity magnitude at different instants in time for the elastic vibration of beryllium plate computed
using an initially Voronoi mesh. Also shown in the Figures is the shape of the bar from FLAG computations. FLAG computations for this case
were computed on a Cartesian structured grid with same mesh resolution as the unstructured case.
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(a) Vertical Displacement (b) Vertical Velocity Magnitude

(c) Energy Conversion History

Figure 9: Comparison with FLAG and PAGOSA for the elastic vibration of beryllium plate - (a) Locus of vertical displacement of the origin (center
of the plate) (b) Magnitude of vertical velocity of the center of the plate (c) History of energy conversion
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Figure 10: Initial configuration of the cylindrical beryllium shell. Dimensions shown in the figure are in meters.

contours of velocity magnitude is plotted at different instants in time. The figure indicates that the symmetry of the
solution is well preserved. Furthermore, the velocity magnitude in the shell becomes negligible at about 140 µs,
consistent with the analytical results. Figure 12(b), shows comparison for the effective plastic strain contours with
FLAG calculations at 140 µs. The plots indicate excellent agreement between the two calculations. The results
from FLAG calculations were computed on a structured annular mesh with quadrilateral elements (Figure 12(b)).
The enlarged view of the mesh shown in the figure confirms that the current solution is independent of the mesh
topology. The locus of inner radius (Figure 12(c)) and the history of velocity magnitude (Figure 12(d) plotted at
different positions along the inner radius indicate remarkable agreement between the two calculations. Furthermore,
the inherent symmetry in the solution is also well preserved.

Figure 11: Topology of the polygonal mesh used for the collapse of cylindrical beryllium shell calculations. The polygonal mesh (right hand side)
is constructed from the dual of the triangular mesh displayed on the left hand side.

7.2.2. Collapse of Spherical Beryllium Shell in a Structured Annular Mesh
For the spherical collapse, U0 = 673.4 ms−1 with α = 2.0. The spherical shell coasts until the inner radius

reaches 3 cm at 100 µs. At this instant in time, all the kinetic energy is converted to internal energy bringing the shell

38



(a) Contours of Magnitude of Velocity (b) Contours of Effective Plastic Strain and Mesh at 140 µs

(c) Locus of Inner Radius (d) Velocity History

Figure 12: Plots for the collapse of cylindrical beryllium shell (a) Contours of magnitude of velocity at different instants in time (b) Contours of
effective plastic strain εp at 140 µs (c) Locus of inner radius and (d) Time history of velocity magnitude at different positions along the inner
radius.
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to a complete rest. The shell will continue to collapse if it is treated purely hydrodynamic, with no strength model. A
detailed analysis for the analytical solution can be found in [63].

(a) Contours of Effective Plastic Strain (b) Contours of Velocity Magnitude

Figure 13: Contours of effective plastic strain εp and velocity magnitude at different instants in time for the incompressible plastic collapse of
spherical shell.

The calculations presented in this section are performed in RZ geometry. An annular grid with 50×90 cells in r, θ
directions is used. In Figure 13, contours of effective plastic strain and velocity magnitude are plotted. The contour
plots indicate that the inherent symmetry in the problem is well preserved. Figure 13(b) shows that the magnitude of
the velocity of the shell is almost zero at 100 µs. The predicted final inner radius of the bar at this instant is 3 cm.

Comparison with FLAG and PAGOSA: Comparison between FLAG and current calculations for the contours of
effective plastic strain is shown in Figure 14(a). No discernible difference can be seen between the two plots. The
locus of inner radius plotted in Figure 14(b) confirms that the shell comes to rest at 100 µs with inner radius measuring
3 cm. Different points along the inner radius of the shell follow exactly the same trend ensuring perfect symmetry of
the shell. The figure also shows that convergence of the solution is reached for the chosen mesh resolution. PAGOSA,
FLAG and current predictions lie on top of each other. As expected the second-order solution is much superior to the
first order case. Neither the order of accuracy of the scheme nor the mesh resolution have any effect on the symmetry
of the resolution. This is to say that symmetry preservation is not a consequence of any of these factors but an intrinsic
feature of the scheme. The history of velocity magnitude plotted at different points along the inner radius of the shell
compares well with FLAG calculations 14(c). The shell oscillates elastically beyond 100 µs with no dissipation of
energy and this behavior can be clearly identified in the figure. Conversion of kinetic to internal energy of the shell
matches well with PAGOSA’s prediction (Figure 14(d)). No significant dissipation of energy is noted beyond 100 µs
and the same is reflected in the energy conversion history plotted in Figure 14(e). In addition, the figure also shows
that the total energy of the shell is preserved throughout the computation.

Comparison between Least Squares and Mimetic Gradient Estimate Techniques : Comparisons between least
squares and mimetic gradient evaluation technique are made for the spherical shell collapse. In this case, the calcu-
lations are carried on an extremely coarse mesh with 10 × 90 cells. The plots for these calculations are displayed in
Figures 15(a) & 15(b). The plots indicate that the least squares approach fails to preserve symmetry particularly dur-
ing the elastic oscillation period. It is during this period, the cells along the inner surface of the shell are stretched and
compressed alternately. The zoomed view of the mesh gives an indication of the aspect ratio of the cells encountered
near the inner surface of the shell. The least squares approach appears to be sensitive to the aspect ratio of the cells
whereas the mimetic gradient evaluation technique appears to be robust and independent of the quality of the mesh.
The symmetry of the solution is well preserved with the mimetic formulation.
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(a) Contours of Effective Plastic Strain (b) Locus of Inner Radius

(c) History of Velocity Magnitude (d) History of Kinetic Energy (e) History of Energy Conversion

Figure 14: Comparison with FLAG and PAGOSA for the incompressible plastic collapse of spherical shell - (a) Contours of effective plastic strain
at 100 µs (b) Locus of inner radius for three different mesh resolution (c) History of magnitude of velocity for points along the inner radius (d)
History of Kinetic energy of the shell (e) Conversion of energy from kinetic to internal energy
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(a) Locus of Inner Radius (b) Snapshot of the Mesh at 200 µs

(c) Enlarged View of the Mesh at 200 µs

Figure 15: Comparison between least squares and mimetic gradient estimate technique for the incompressible plastic collapse of spherical shell on
mesh with 10 × 90 cells in r, θ directions respectively - (a) Locus of inner radius for three different mesh resolution (b) Snapshot of the Mesh at
200 µs (c) Enlarged view of the mesh near the inner surface of the shell at 200 µs
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7.3. Axisymmetric Shock Tube Problem in Aluminum

In this example, a slightly different version of the two-dimensional shock tube problem presented in [64] is con-
sidered. Material parameters corresponding to aluminum are given below:

ρ = 2710 kgm−3, G = 0.286 GPa, Y0 = 0.0026 GPa, Co = 5330 ms−1, s = 1.34,Γ = 2.0

The initial conditions for the shocked and un-shocked regions are summarized in the Table 4. Shocked conditions are

Initial Conditions Un-shocked Conditions Shocked Conditions:
ρ 2710.0 kg m−3 2764.2 kg m−3

P 0 1.60 GPa
uuu 0 0
σxx 0 −1.60 GPa
σyy 0 −1.60 GPa
σxy 0 0

Table 4: Initial conditions for the shock tube problem in aluminum - shocked conditions are enforced when ||xxxc − xxxo|| < 1.5 m with xxxo = ~0

enforced when ||xxxc − xxxo|| < 1.5 m with xxxo = ~0.
The purpose of this test case is to isolate the effects of pressure from material strength (shear stress) and benchmark

the results in comparison with FLAG calculations. In this case, the calculations are performed on three-different mesh
typologies:

• a polar mesh with 180× 18 cells in r, θ directions in a computational domain of dimensions 4.5m× 90o,

• a Cartesian mesh with 180× 180 cells in a computational domain of dimensions 4.5m× 4.5m,

• a polygonal (Voronoi) mesh constructed from a dual of a triangular mesh with 16641 cells in a computational
domain of dimensions 4.5m× 90o

The simulations are run in cylindrical axisymmetric coordinates upto a final time of 150 µs. The results from the
calculations are compared contrasted against the solution obtained from FLAG calculations. The FLAG calculations
were carried out on a structured polar mesh with 180 × 18 in a computational domain of dimensions 4.5m × 90o.
Results from the current and FLAG calculations are displayed in Figures 16. The contour plots displayed in Fig-
ures 16(a) & 16(b) show excellent agreement between the two calculations in predicting the location of the disconti-
nuities. Symmetry is well preserved in both calculations. The enlarged view of the mesh is shown in Figure 16(c). The
scatter plot displayed in Figure 16(d) indicates that the solutions are independent of mesh topology. The inherent sym-
metry of the problem is well preserved in addition to being in good agreement with the reference FLAG calculations.
Furthermore, the location of shock and contact discontinuity are in good agreement with FLAG predictions.

7.4. Axisymmetric Taylor Bar Experiment: Impact of a Copper Rod Over a Rigid Substrate at 227 ms−1

Taylor bar test [65] on a copper rod is considered. The problem set up has been discussed in [38, 39]. The Taylor
bar impact test is a standard test problem to verify and validate numerical and experimental observations. In the
axisymmetric setting, a cylindrical rod made of copper with an initial radius of 3.2 mm and a length of 32.4 mm
impacts a rigid flat substrate at 227 m/s (Figure 17). The rod has an initial density of 8930 kgm−3, Young’s modulus
E = 117 GPa, Poisson’s ratio ν = 0.35, and yield stress σY = 400 MPa. The material is assumed to harden linearly
with a plastic modulus of 100 MPa. The calculations are carried up to a time of 80µs at which point nearly all the
initial kinetic energy has been dissipated as plastic work. The results from the current calculations are compared with
Eulerian [38, 39] and Lagrangian (FLAG) calculations.
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(a) Density (b) Effective Plastic Strain

(c) Enlarged View of the Mesh (d) Scatter Plot

Figure 16: Plots for the axisymmetric shock tube problem in aluminum at 150 µs - (a) Contours of density (b) Contours of effective plastic strain
(c) Enlarged view of the mesh (d) Scatter plot of density.
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Figure 17: Initial configuration for the axisymmetric Taylor test on a Copper rod.

7.5. Structured Mesh Computations for the Taylor impact test case at 227 ms−1: Comparison with Lagrangian Hy-
drocode for Two Different Gradient Evaluation Techniques

In Figures 18 & 19 comparison between FLAG predictions and current calculations computed using least squares
(Figure 18) and mimetic (Figure 19) gradient evaluation techniques are presented. During the early stages of the
evolution of the rod, the solution corresponding to least squares gradient estimate technique matches well with FLAG
calculations. However, Figure 18(b) indicates that least squares technique based solution begins to deviate from the
reference FLAG calculations. These deviations are clearly discernible in Figure 18(c) & 18(d). These deviations are
also apparent in the plots of position and velocity histories displayed in Figures 20(a) & 20(b). Further evidence for
this trend can be seen in the final configuration of the bar displayed in Figure 21. These figures indicate that the least
squares based solution continuously under-predicts the dimensions and the velocity magnitude of the bar. The final
configuration of the bar predicted by least squares implementation also deviates distinctly from FLAG calculations.
The reason for this departure from the reference solution can be attributed to the large aspect ratio cells that begins to
develop as the bar begins to stretch and deform. In such situations, the least squares gradient estimate approach fails
to provide satisfactory results.

On the contrary, with reference to Figure 19, the contour plots corresponding to mimetic gradient estimate tech-
nique shows excellent agreement with FLAG calculations. The locus plots for the position and velocity magnitude of
the head and toe of the rod displayed in Figures 20(c) & 20(d) follow closely the FLAG calculations trend. Further-
more, the snapshot shown at 80 µs (Figure 21(b)) is a conclusive evidence of the superiority of the mimetic gradient
estimate technique.

7.6. Unstructured Polygonal Mesh Computations for the Taylor impact test case at 227 ms−1: Comparison with
Eulerian Hydrocode

In this section, computations on mesh with arbitrary polygonal elements are reported. The initial topology of the
mesh is shown in Figure 22(a) with the enlarged view of the elements comprising the mesh shown in Figure 22(b).
The results from the polygonal mesh computations are compared against Eulerian calculations reported in [38]. The
Eulerian calculations were performed on a mesh with 14901 cells whereas the current Lagrangian calculations were
computed on a mesh with 14651 randomly distributed elements. The comparisons are displayed in Figure 23. Fig-
ures 23(a) through 23(c) show excellent agreement between the two with slight discrepancy in the final length of the
bar at 75 µs as indicated in Figure 23(d). Contours effective plastic strain and the enlarged view of the polygonal
mesh for the current Lagrangian computations are displayed in Figure 24. Despite of the disparities in the mesh
topology, the two fundamentally different approaches for the same problem yield exactly the same outcome. The
length of the bar, radius of the foot and the contours of effective plastic strain at different instants in time demonstrate
striking similarities between the two calculations. The locus of head and tail of the bar plotted in Figure 25(a) and the
final configuration of the bar displayed in Figure 25(b) at 75 µs further substantiates this claim. A summary of the
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(a) 20 µs (b) 40 µs

(c) 60 µs (d) 80 µs

Figure 18: Structured mesh computations for the Taylor impact test case at 227 ms−1 compared with FLAG calculations for least squares gradient
estimation technique - Contours of effective plastic strain εp at different instants in time
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(a) 20 µs (b) 40 µs

(c) 60 µs (d) 80 µs

Figure 19: Structured mesh computations for the Taylor impact test case at 227 ms−1 compared with FLAG calculations for mimetic gradient
estimation technique - Contours of effective plastic strain εp at different instants in time
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(a) Position History for Least Squares Implementa-
tion

(b) Velocity History for Least Squares Implementa-
tion

(c) Position History for Mimetic Implementation (d) Velocity History for Mimetic Implementation

Figure 20: Structured mesh computations for the Taylor impact test case at 227 ms−1 compared with FLAG calculations for mimetic and least
squares gradient implementation - (a) Locus of head and tail (b) Velocity history of head and tail

(a) Least Squares Implementation (b) Mimetic Implementation

Figure 21: Comparison with FLAG calculations for mimetic and least squares gradient estimate implementation - Contours of effective plastic
strain εp and configuration of the bar at T = 80 µs for the impact of copper rod at 227 ms−1
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(a) Initial Mesh at T = 0 ms−1 (b) Enlarged View of the Mesh at T = 0 ms−1

Figure 22: (a) Initial topology of the mesh for the Taylor impact test case at 227 ms−1 (b) Enlarged view of the mesh at time T = 0 ms−1

evolution of the bar at different instants in time is presented in Figure 25(d). Compatibility of the scheme with total
energy conservation is evident from the energy conversion history plotted in Figure 25(d).

7.7. Axisymmetric Taylor Bar Experiment: Impact of a Copper Rod Over a Rigid Substrate at 190 ms−1

In this section, the impact of a copper rod at 190 ms−1 is considered. The problem has been solved in [61] and is
considered here to demonstrate the effects of nonlinear yield models. Moreover, the availability of experimental results
(also presented in [61]) makes this an attractive test case to benchmark the current implementation. For this test case,
the length and the radius of the bar are set at 25.4 mm and 3.81 mm in order to match the experimental results. Both
Johnson-Cook (Eq (C.2)) and Steinberg-Guinan (Eq (C.4)) yield models, that includes the thermal softening effects,
are employed for this calculation. The calculations are performed on a mesh comprising of polygonal elements. The
mesh was constructed from a centroidal Voronoi algorithm with 150×50 generators distributed in the axial and radial
directions leading to 7291 elements in the mesh. The calculations are carried upto 80 µs in RZ geometry. The plots
from the current calculations are displayed in Figure 27. The enlarged view of the mesh at two different instants in
time are presented in Figures 28(a) and 28(b).

7.7.1. Cartesian Mesh Calculation - Comparison with PAGOSA and Experimental Results
Similar to the 227 ms−1 impact velocity test case, significant features such as the final mushroom shape of the

bar with the bulging and jetting of the foot are captured very well. However, the predictions made by the two yield
models differ significantly from each other. In Figure 28(c), the results from the current calculations are compared
with the experimental and PAGOSA results. PAGOSA calculations were computed on a three-dimensional mesh with
40 × 40 × 110 cells in x,y and z directions respectively. As can be inferred from the figure, results obtained using
the Steinberg-Guinan yield model show excellent agreement between PAGOSA and current calculations. Similarly,
the plots corresponding to Johnson-Cook yield model show very good agreement between the two calculations. For
the Steinberg-Guinan yield model, the overall shape of the bar and the final radius of the foot agree well with the
experimental results. Both calculations fail to predict the final length of the bar that matches will with the experimental
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(a) 20 µs (b) 40 µs

(c) 60 µs (d) 80 µs

Figure 23: Unstructured polygonal mesh computations compared with Eulerian calculations from [38] for the Taylor impact test case at 227 ms−1

- Contours of effective plastic strain εp at different instants in time for the impact of a copper rod at 227 ms−1.
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(a) Mesh at 20 µs (b) Enlarged View at 20 µs

(c) Mesh at 75 µs (d) Enlarged View at 75 µs

Figure 24: Unstructured polygonal mesh computations for the Taylor impact test case at 227 ms−1: Contours of effective plastic strain εp and the
topology of the mesh at 20 µs and 75 µs are displayed in (a) and (c) respectively and the corresponding enlarged view of the mesh are shown in (b)
and (d)
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(a) Locus of Head and Tail (b) Final Configuration of the Rod at
80 µs

(c) Evolution of the Rod (d) Energy Conversion History

Figure 25: Plots for the unstructured polygonal mesh computations for the Taylor impact test case at 227 ms−1: (a) Locus of head and tail
compared with Eulerian computations (b) Contours of effective plastic strain εp and configuration of the rod at T = 75 µs compared with Eulerian
computations and (c) Evolution and configuration of the rod at different instants in time (d) History of conversion of energy
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Figure 26: Snapshot of the initial unstructured mesh comprising of polygonal elements for the impact of a copper rod at 190 ms−1

results. For the Johnson-Cook yield model, the final radius of the foot predicted by the two calculations agrees well
with the experimental results. Nevertheless, the overall predictions from the current implementation of the two yield
models follow closely the contours of PAGOSA calculation.

8. Conclusions

Appendix A. Equation of State

The incomplete Mie-Grüneisen formulation based equation of state is used. Pressure, specific internal energy and
specific volume (v = 1

ρ ) are coupled through a relation of the form:

P (e, v) ≈ Γ(v)
(e− eref (v))

v
+ Pref (v) = Γ

e

v
+ f(v) (A.1)

where eref and Pref denote the reference internal energy and pressure at 0 K. Γ(v) is the Grüneisen parameter defined
as

Γ(v) = v

(
∂P

∂e

)
v

=
Γ0v

v0
(A.2)

where v0 = 1
ρ0

is the specific volume of the unstressed material. Accommodating for negative pressure (tension) and
preserving the positivity of sound speed-squared, the function f(v) in Eq (A.1) is written as

f(v) =

{
ρ0c

2
0Φ

(1−sΦ2)2 [1− Γ
2v (v0 − v)] if v ≤ v0

c20( 1
v −

1
v0

) if v > v0

(A.3)

In the above expression, Φ = 1 − v
v0

, c0 is the bulk sound speed and s is related to the isentropic pressure derivative
of the isentropic bulk modulus [36]. The c0 & s coefficients relate the shock speed Us and the particle velocity Up.
Experiments on solids provide a relation between Us and Up. A first approximation consists of a linear relation given
as

Us = co + sUp (A.4)
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(a) 20 µs (b) 40 µs

(c) 60 µs (d) 80 µs

Figure 27: Unstructured polygonal mesh computations for the impact of a copper rod at 190 ms−1 with Johnson-Cook and Steinberg-Guinan
material models - Contours of effective plastic strain εp at different instants in time
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(a) Enlarged View of the Foot at 20 µs

(b) Enlarged View of the Foot at 60 µs (c) Comparison with PAGOSA and Experimental Re-
sults

Figure 28: Unstructured polygonal mesh computations for the impact of a copper rod at 190 ms−1 with Johnson-Cook and Steinberg-Guinan
material models - (a)Enlarged view of the mesh and foot of the bar (b)Comparison with experimental and PAGOSA Results - Final configuration
of the rod for the Johnson-Cook and Steinberg-Guinan yield models for the impact of a copper rod at 190 ms−1.
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The expression for the speed of sound in the material is then given by

c2EOS =

(
∂P

∂ρ

)
e

+
P

ρ2

(
∂P

∂e

)
ρ

= Γe+ f ′(v) + Γ
P

ρ
(A.5)

The final expression for the speed of sound is given as

c2 = c2EOS + c2SHEAR (A.6)

where
c2SHEAR =

4

3

G

ρ
(A.7)

Appendix B. Radial Return Mapping Algorithm

The radial return algorithm presened here is due to Ponthot et al [33, 34]. The consistency condition,

f(SSS, σY ) = Se − σY = 0 (B.1)

with linear hardening law given by:

σ̇Y =

√
2

3
hΛ̇ (B.2)

where σY is the current yield stress and h (also called plastic modulus) is the slope of the effective stress versus
effective plastic strain curve under uniaxial loading. Using Eq (24), the yield stress can be written as

σ̇Y = h¯̇εP (B.3)

When elastic deformation occurs, f < 0 and Λ̇ = 0. Plastic deformation is said to occur when the consistency
condition holds true, ḟ (SSS, σY ) = 0. In conjunction with the operator splitting algorithm, the predicted trial elastic
state “tr” is obtained by freezing the plastic flow (D̄DDPL

= 0),

ṠSStr +SSStrΩΩΩ−ΩΩΩSSStr = 2GD̄DD (B.4)

where SSStr is the trial elastic stress tensor. The trial elastic state is determined by numerically integrating the integral
form of the stress evolution equation (Eq (B.4)). The plastic corrector step is enforced to bring the computed trial
stress back to the yield surface:

ṠSScor = −2GDDDPL = −2GΛ̇NNN (B.5)

where SSScor is the corrected stress update andNNN is the normal direction in which the return mapping is effected:

NNN tr =
SSStr√

SSStr : SSStr
(B.6)

In discrete form, the plastic corrector step can be obtained by integrating Eq (B.5) to obtain

SSScor = SSStr − 2GNNN trζ (B.7)

where

ζ =

∫ t1

t0

Λ̇dt (B.8)

56



with t0 and t1 denoting the beginning and end of the time interval of integration. The parameter ζ is determined by
enforcing the generalized consistency condition, f = 0, at time t = t1.

f =

√
3

2
[(SSStr − 2GNNN trζ) : (SSStr − 2GNNN trζ)]− σY = 0 (B.9)

Integrating Eqs (24) & (B.3) in time, we get

ε̄P1 = ε̄P0 +

√
2

3
ζ (B.10)

σ1
Y = σ0

Y +

√
2

3
hζ (B.11)

where “0” and “1” denote the values at t0 and t1, respectively. Substituting for σ1
Y , Eq (B.9) is simplified(

4G2 − 4

9

)
ζ2 −

(
4G
√
SSStr : SSStr +

4

3

√
2

3
h

)
ζ +

(
SSStr : SSStr −

2

3
σ02

Y

)
= 0 (B.12)

to obtain

ζ =

√
SSStr : SSStr − 2

3σ
0
Y

2G
(
1 + h

3G

) (B.13)

Thus, once ζ is obtained, the correction for the predicted deviatoric stresses is performed using Eq (B.5) and the
consistency condition is enforced iteratively.

Appendix C. Material Models

Material models are required to determine the flow (yield) stress to enforce the consistency conditions in the
return mapping algorithm. Three material models that are used in this work include the Prandtl-Ruess [32], Johnson-
Cook [66] and Steinberg-Guinan material model [67]. The expressions for flow stress corresponding to these models
are given below:.

Prandtl Reuss: σY = A+B( ˙̄εP )n (C.1)

Johnson-Cook: σY =
(
A+B( ˙̄εP )n

)(
1 + Cln

(
˙̄εP

˙̄εP0

))
(1− θm) (C.2)

Steinberg-Guinan: σY = Y0[1 + κ ˙̄εP ]n[1 + bPν
1
3 − δ(T − T0)] (C.3)

where ν = ρ0
ρ , A = Y0 is the initial yield stress for the material with B, C, n, m, ˙̄εP0 denoting the model constants and

θ = T−T0

Tm−T0
, where Tm and T0 are material melting and the reference room temperatures respectively. The additional

conditions on the temperature, shear modulus and yield stress for the Steinberg-Guinan models are:

Y0[1 + κ ˙̄εP ]n ≤ Ymax (C.4)
Y = 0 for T > Tm where (C.5)
Tm = Tm0ν

2
3 e[2Γ0(1−ν)] (C.6)

G = G0[1 + bPν
1
3 − (T − T0)] (C.7)
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[58] P.-H. Maire, R. Loubère, P. Váchal, Staggered Lagrangian discretization based on cell-centered riemann solver and associated hydrodynamics
scheme, Communication in Computational Physics 10 (4) (2011) 940–978.

[59] G. Luttwak, J. Falcovitz, Slope limiting for vectors: A novel vector limiting algorithm, International Journal for Numerical Methods in Fluids
65 (11-12). doi:10.1002/fld.2367, pages = 1365?1375.
URL http://dx.doi.org/10.1002/fld.2367

[60] W. N. Weseloh, S. P. Clancy, J. W. Painter, PAGOSA physics manual, Tech. rep., Group XTD-1 Silverton Code Project, Los Alamos National
Laboratory (2010).

[61] W. N. Weseloh, PAGOSA sample problems, Tech. rep., Los Alamos National Laboratory (2011).
[62] B. P. Howell, G. J. Ball, A free-Lagrange augmented godunov method for the simulation of elastic-plastic solids, Journal of Computational

Physics 175 (1) (2002) 128 – 167. doi:10.1006/jcph.2001.6931.
URL http://www.sciencedirect.com/science/article/pii/S0021999101969311

[63] S. C. Team, PAGOSA sample problems, Tech. rep., Los Alamos National Laboratory (2005).
[64] M. B. Tyndall, Numerical modelling of shocks in solids with elastic-plastic conditions, Shock Waves 3 (1993) 55–66, 10.1007/BF01414748.

URL http://dx.doi.org/10.1007/BF01414748
[65] G. I. Taylor, The use of flat-ended projectiles for determining dynamic yield stress. i. theoretical considerations, Pro-

ceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 194 (1038) (1948) 289–299.
arXiv:http://rspa.royalsocietypublishing.org/content/194/1038/289.full.pdf+html, doi:10.1098/rspa.1948.0081.
URL http://rspa.royalsocietypublishing.org/content/194/1038/289.abstract

[66] G. R. Johnson, W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,
Engineering Fracture Mechanics 21 (1) (1985) 31 – 48.

[67] D. J. Steinberg, S. G. Cochran, M. W. Guinan, A constitutive model for metals applicable at high strain rate 51 (3) (1980) 1498–1504.
doi:DOI:10.1063/1.327799.
URL http://dx.doi.org/doi/10.1063/1.327799

60


