
HPCCloud: A Cloud/Web-Based Simulation Environment

Patrick O’Leary
Kitware Inc

Santa Fe, NM 87505

oleary@kitware.com

Mark Christon
Los Alamos National

Laboratory
Los Alamos, NM 87545

christon@lanl.gov

Sébastien Jourdain
Kitware Inc

Santa Fe, NM 87505

jourdain@kitware.com

Chris Harris
Kitware Inc

Clifton Park, NY 12065

harris@kitware.com

Markus Berndt
Los Alamos National

Laboratory
Los Alamos, NM 87545

berndt@lanl.gov

Andrew Bauer
Kitware Inc

Clifton Park, NY 12065

bauer@kitware.com

ABSTRACT
Advanced modeling and simulation has enabled the design
of a variety of innovative products and the analysis of nu-
merous complex phenomenon. However, significant barriers
exist to widespread adoption of these tools. In particular,
advanced modeling and simulation: (1) is considered com-
plex to use; (2) needs in-house expertise; and (3) requires
high capital costs. In this paper, we describe the develop-
ment of an end-to-end, advanced modeling and simulation
cloud platform that encapsulates best practices for scien-
tific computing in the cloud, and demonstrate using Hydra–
TH as a prototypical application. As an alternative to tra-
ditional advanced modeling and simulation workflows, our
Web-based approach simplifies the processes, decreases the
need for in-house computational science and engineering ex-
perts, and lowers the capital investments. In addition to
providing significantly improved, intuitive software, the en-
vironment o↵ers reproducible workflows where the full path
of data from input to final analyzed results can be saved,
shared, and even published.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2.4 [Computer Communication Networks]: Distributed
Systems—Cloud Computing

General Terms
Management, Measurement, Performance, Design, Economics,
Experimentation, Standardization

Keywords
Cloud computing, HPC, Integrated simulation environment

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

The International Conference for High Performance Computing, Network-
ing, Storage and Analysis SC’15 Austin, Texas USA

Copyright 2015 ACM 0-12345-67-8/90/01 ...$15.00.

1. INTRODUCTION
Today’s solutions for high-performance computing in the

cloud provide infrastructure as a service (IaaS), which ex-
tends the computational resources available and lowers the
required hardware capital investments. But that only ad-
dresses one of the barriers to full adoption of the advanced
modeling and simulation lifecycle.

For capabilities that are not a core competency of an en-
terprise, management is hard pressed to justify why the
needs of the business cannot be met with a software as a
service (SaaS) solution. In the world of enterprise software,
on-premises solutions are becoming rare. However, until re-
cently advanced modeling and simulation applications have
required classic on-premise solutions and deployments.

The economies of scale that come with the cloud combined
with the innovation and agility of SaaS independent software
vendors has led to a world of primarily SaaS-based enterprise
applications.

Figure 1: The end-to-end Cloud/Web-based simu-
lation environment, HPCCloud, simplifies the com-
plexities of defining simulations, submissions, and
visualizations all from the same browser application.

Hence, a simulation environment that leverages IaaS to lower
capital costs, but also delivers innovative, interactive and
richer applications that are easier to use via SaaS to an in-
dustry’s core competency employees would enable the full
adoption of the advanced modeling and simulation lifecycle.

Figure 2: Simulating reactor flow in the lower-plenum during pump startup sequence with Hydra-TH. We
see pressure contours in the lower plenum at startup that indicate transient behavior possibly associated with
the lower-plenum flow anomaly.

Past investigations concluded a traditional website con-
sisting of HTML, CSS and sometimes a little javascript as an
impractical solution for the requirements of advanced mod-
eling and simulation applications. End-users don’t just want
websites to work and look good on every device, they also
want them to be more interactive with three-dimensional
graphic content. The creation of new standards (HTML5
and CSS3) allow developers to build richer Web applications
for both mobile and desktop browsers.

We have created a Cloud/Web-based simulation environ-
ment platform that utilizes new Web technologies to de-
liver an innovative, interactive SaaS advanced modeling and
simulation environment responsive to the end-users’ needs.
The platform, implementing our Cloud/Web-based simula-
tion environment, makes several contributions to the “tradi-
tional simulation” mode.

Data/Task Management System. Our simulation en-
vironment takes a traditional simulation and enables inter-
active, collaborative advanced modeling and simulation in
the cloud leveraging a data/task management system. This,
in turn, creates a viable solution for many small and medium
manufacturing and engineering firms. Our platform:

• Enables authentication and authorization workflows
while providing data security from malicious or un-
intended access or use.

• Creates clusters in clouds through asynchronous dis-
tributed task queues utilizing an extended data model
and RESTful API.

• Supports elaborate workflows, which include analysis
preparation (i.e., pre-processing), simulation including
transformative analysis (parameter estimation, sensi-
tivity analysis, uncertainty quantification and optimiza-
tion), and results analysis including visualization (i.e.,
post-processing).

• O↵ers reproducible workflows where the full path of
data from input to final analyzed results can be saved,
shared, and even published as supporting information.

Simple Input Deck Definition. We created a reusable
toolkit for defining simulation input decks, called SimPut.
SimPut completely di↵erentiates itself from other mecha-
nisms providing a graphical user interface for defining sim-
ulation input decks by:

• Separating the presentation from the input deck key-
word/value and format. Thus, the required data entry
can be delivered via a front-end in a manner that en-
ables use by non-expert scientist, engineers and tech-
nicians.

• Creating built-in documentation within the front-end
for a description of the required simulation informa-
tion.

Integration of 3D Pre- and Post-processing Tools.
We added integration for ParaViewWeb applications. Par-
aViewWeb is a collection of components that enables the
use of ParaView’s visualization and data analysis capabili-
ties within Web applications. This unique capability:

• Provides access to ParaView servers running on cloud
resources launched within the HPCCloud simulation
environment.

• Makes it possible to develop and integrate unique three
dimensional applications to support pre-processing and
post-processing.

Finally, we have exposed the platform of our Cloud/Web-
based simulation environment to the scientist through a Web
interface that allows him/her to make sophisticated deci-
sions for simulation.

In the sections that follow, we illustrate how HPCCloud
meets the goals for the future advanced modeling and sim-
ulation.

2. RELATED WORK
HPCCloud has a number of contributions, while building

on a vast amount of previously disseminated results, specif-
ically concerning cloud computing, such as those described
by Kenneth Wong [30]. Therefore, we quickly review re-
lated work for data/task management system, input deck
definition and three-dimensional pre-processing and post-
processing tools.

Data/Task Management System. The data/task man-
agement system curates input and results while performing
tasks required of the simulation environment. One option is
to start with a data management system for scientific appli-
cations [26]. Berman et al [14], Benson et al [13] and count-
less others have used this approach. HPCCloud extends
the data management system to support tasks for creating
clusters on clouds, submitting simulations (or visual appli-
cations), monitoring simulations (visual applications), and
ingesting assets, artifacts and state associated with these
tasks.

Input Deck Definition. Our platform provides a uni-
versal mechanism for describing a graphical user interface
for providing simulation information in the form of an input
deck. Eclipse Integrated Computational Environment [25],
Computational Model Builder [20], and Salome Platform
[27] all provide desktop applications for producing simula-
tion input decks. These tend to present the generic infor-
mation in the same manner (key-value pairs) as presented
in the ASCII input deck file. HPCCloud provides a simple
interface to adapt the presentation in a more domain specific
manner. The end results are similar to one-o↵ domain spe-
cific computational environments such as Latec developed
by Heulers et al [19]. HPCCloud also integrates help (or

the user manual) directly to lower entry requirements of the
end-user. This shift moves the end-user requirements from
computational expertise to domain expertise.

3D Pre- and Post-processing Tools. Until recently,
there simply wasn’t any real solution for Web-based simula-
tion visualization other than sharing some selected images,
as depicted in Long et al [24]. Work by the teams associ-
ated with ParaView [12, 1] and VisIt [15, 7], both of which
depend on the Visualization Toolkit [28, 2], have created re-
mote visualization frameworks suitable for modern browsers.
HPCCloud encapsulates the ParaViewWeb [22] framework
to promote the development and integration of unique do-
main specific three-dimensional pre- and post-processing ap-
plications.

Early adopters of Web-based simulation environments fail-
ed to (1) simply communicate with the backend server and
to (2) create simple interactive components [23]. They strug-
gled to communicate with network-unaware applications de-
pending on things like the Remote Method Invocation (RMI)
mechanism and the Common Object Request Broker Ar-
chitecture (CORBA). Python wrapping (or similar mecha-
nisms in other languages) turns applications from network-
unaware into network/Web-aware. HTML5, CSS3, modern
JavaScript ES6, customized REST API, mobile-first designs
and single-page applications have made creating an easy to
use front-end for Web-based simulations possible.

3. APPROACH
We have created HPCCloud, our implementation of the

Cloud/Web-based simulation environment platform. HPC-
Cloud is

1. Easy to use,
2. Usable by industry’s core competency employees; and
3. Eliminates high capital costs.

Figure 3: HPCCloud implementation demonstrat-
ing an end-to-end simulation environment. (Upper-
Left) The mesh tagging tool that leverages Par-
aViewWeb to assign meaningful names to elements,
materials, and side sets. (Upper-Right) Defining
the input deck for Hydra-TH, specifically the ma-
terial properties of water. (Lower-Left) Describing
an HPC cluster to be created in the AWS Cloud
and submitting the defined simulation. (Lower-
Right) The visualizer tool that again leverages Par-
aViewWeb for analyzing and visualizing the simula-
tion results.

The platform supports a complete simulation lifecycle,

which removes the barriers to using advanced modeling and
simulation throughout industry. First and foremost, HPC-
Cloud strategically eliminates the need to hire non-core com-
petent computational science and engineering experts, by
o↵ering a simple to use interface from the comfort of their
browsers. From an industry perspective, these positions rep-
resent recurring labor costs that in most cases are unable to
perform any traditional role for the firm. Hiring these ex-
perts represented a leap of faith that many companies are
not willing to take in adopting advanced modeling and sim-
ulation workflows. Finally, the platform leverages the cost
e↵ective cloud computing embraced by other facets of their
enterprise computing architecture.

3.1 Data/Task Management System

Plugins

Security
 Authentication
 Ownership
 Permissions

Data Model
 Users
 Groups
 Collections
 Folders
 Items

Data Repositories
 Asset Stores

GridFS

FilesystemMetadata

M
od

el

A
PI

W
eb

Data
Integration

Collaboration

Pr
es

en
ta

ti
on

 L
ay

er
 (

W
eb

)
A

pp
lic

at
io

ns

RE
ST

fu
l A

PI

RE
ST

fu
l A

PI

In
ge

st
io

n

MongoDB

S3

Figure 4: The Girder architecture.

For a data management system, we leveraged Girder [4].
Girder is a data management toolkit. The goal of Girder is
to provide developers with a scalable data management sys-
tem, so that they can focus on building great applications.
To meet this goal, Girder is designed to be robust, fast, scal-
able, extensible, and easy to understand. Built on Python,
Girder is a complete back-end (server side) technology that
can be used with other applications via its RESTful API, or
via its own front-end. Girder is open source, licensed under
the Apache License, Version 2.0.

Girder utilizes a representational state transfer (REST)
architecture style. RESTful APIs typically communicate
over the hypertext transfer protocol (HTTP) with the same
verbs (GET, POST, PUT, DELETE, etc.) used by web
browsers to retrieve web pages and send data to remote
servers. The components of the Girder architecture, shown
in Figure 4, will be discussed in the following subsection.

3.1.1 Girder Data Management System
Our platform requires a data repository(ies) to store files,

metadata and entities, and Girder provides a variety of as-
set stores to meet this need. In Girder, some files are sim-
ply links to external unified resource locators (URLs), all
others must be contained within an Asset Store. Each Item
may contain any number of arbitrary key-value pairs, termed
metadata, which Girder stores in a Mongo database (Mon-
goDB [5]).

In Girder, an asset store is an abstraction representing a
repository where the raw bytes of Files are actually stored.
The following are some current concrete implementations of
Girder asset stores: an AmazonWeb Services’ S3 bucket; the
local filesystem of the server using content-addressed stor-
age; and/or directly within the MongoDB using the GridFS
model.

Girder’s base data model provides several components nec-
essary for collaboration and data integration required for
the Cloud/Web-based simulation environment. For collabo-
ration, we have user(s) and group(s). Users can be granted
permissions on resources in the system directly, and can be-
long to groups. One of the main purposes of groups is to
allow role-based access control. Resources can grant access
to groups rather than just individual users. These entities
are key to sharing assets and artifacts of simulation work-
flows with colleagues (or other users).

Girder’s data model also provides Collection(s), Folder(s),
Item(s) to support data integration. Collections are the top
level objects in data organization. There can be many fold-
ers and items within each collection, and the collection itself
is also an access controlled resource. Folders can contain a
combination of folders and items. Folders have permissions
set on them, and the Items within them inherit permissions
from the Folders that containing them. Items, which may
contain 0 or more files, are the basic unit of data in Girder.

Figure 5: The Girder administration Web-pages.

Security is a salient component of any data management
system. The three fundamental tasks of security are iden-
tity management (authentication), access control (autho-
rization) and data security. Developers can use Girder’s
RESTful API or administration Web-pages, depicted in Fig-
ure 5 to manage users, groups and permissions easily. Role-
based access control is built into Girder, and fine-grained
permissions can be customized down to the User level. Own-
ership is defined on Collections, Folders and Items and the
ownership can be a User or Group.

Data security (data integrity) involves the protection of
the system from malicious or unintended access or use. Girder
addresses the following data security concerns. Data secu-
rity techniques are fluid, but Girder currently addresses: ses-
sion management, database injection, cross-origin resource
sharing (CORS), cross-site scripting (XSS), and cross-site
request forgery (CSRF).

Finally, the base data model, RESTful API, Web content,
and security built into Girder will not support every applica-
tion. Therefore, Girder provides the capability of extending
or modifying these components through plugins. This plu-
gin framework is designed to allow Girder to be as flexible
as possible, on both the client and server sides.

3.1.2 Cumulus Plugin
The Cloud/Web-based simulation environment platform

must build, configure, monitor, and manage clusters in the
Cloud. To meet this requirement, we developed Cumulus,
a Girder plugin. Cumulus is used to extend Girder’s base
data model and RESTful API to support running tasks.

Girder

AMQ

AM
Q

StarCluster
API

RESTful API

Figure 6: Data flow diagram demonstrating the Cu-
mulus architecture.

Cumulus extends Girder’s base data model with the fol-
lowing entities: cluster configurations, clusters, scripts, jobs
and tasks. All REST endpoints are asynchronous so any
long running tasks are o✏oaded to Celery, a distributed task
queue [3]. Celery requires a message broker to communicate
between clients and workers, we leveraged RabbitMQ, an
open source message broker software that implements the
Advanced Message Queuing Protocol (AMQP) [6].

The RabbitMQ Broker is used to hold a queue of mes-
sages (tasks). Girder, through the Cumulus plugin, uses the
Python Celery client to put messages (tasks) on the queue
(Girder is the producer), and a Celery worker pulls them o↵
(the consumer). RabbitMQ allows Girder to communicate
this asynchronous work.

Cumulus o✏oads long running tasks to Celery to prevent
the platform from being unresponsive, and to provide a very
simple linear scaling for the overall system.

Our high-performance computing (HPC) model, for the
platform, is based on cluster computing. A computer cluster
consists of a set of loosely or tightly connected computers
that work together so that, in many respects, they can be
viewed as a single system. This system has dominated the
landscape for advanced modeling and simulation since the
late 1990s [29].

To implement our model in the platform, we depend on
StarCluster [21]. StarCluster simplifies the process of build-
ing, configuring, and managing clusters of virtual machines
on Amazon’s Elastic Compute Cloud EC2 cloud. For the
purposes of submitting jobs, StarCluster configures Sun Grid
Engine (SGE) when the cluster is started. All other tasks,
such as monitoring and data movement, are handled by
scripts invoked using Celery.

3.2 Simple Input Deck Definition
In the process of creating a reusable toolkit for defining

simulations for the Cloud/Web-based simulation environ-
ment platform, we created a universal Web-based interface,
called SimPut, for defining simulation input decks. SimPut:

• Works for any simulator;
• Provides built-in documentation; and
• Exports the input deck to a Web-friendly intermediate

representation.
SimPut completely di↵erentiates itself from other tools

providing a graphical user interface for defining input deck
simulation information because the presentation is not tied
to the traditional input deck keyword-value pairs and for-
mat. This flexibility allows platform developers to create
a front-end for a particular simulation that can be used by
common scientists, engineers and technicians from a firm,
not strictly by specialized computational scientist or engi-
neers.

Figure 7: An end-user is presented with HPC-
Cloud’s version of SimPut to edit and define a simu-
lation input deck. Specifically, SimPut presents the
required information to define a velocity Dirichlet
boundary condition, in this case a wall velocity, for
Hydra–TH.

3.2.1 Intermediate Representation
SimPut uses a Web-friendly json file, simulation.json,

as the intermediate representation of simulation attribute
information. The simulation.json in Listing 1 depicts the
simplest intermediate representation used with SimPut.

The syntax for the intermediate representation json file,
simulation.json, is as follows:
”type” (required) – the type of simulator from a predefined
list integrated into SimPut.
”external” (optional) – for Hydra–TH, our test-bed CFD
simulation code, external is required and holds mesh tags
to simplify the input definition process. The following cate-
gories are currently exposed for mesh-based simulators:

• ”material-tags” – material sets (labels and values) de-
scribes blocks in the mesh of a specific material type.

• ”element-tags” – element sets (labels and values) rep-
resenting individual elements in the mesh.

• ”side-tags” – side sets (labels and values) depicts faces
of the mesh that might be used to define boundary
conditions.

”data” (optional) – Stores the previously defined attributes
using SimPut.

{
”type ”: ”openfoam ”

}

Listing 1: simulation.json file to be virtually or actu-
ally dropped into SimPut, depending on whether it
is within the HPCCloud platform or the standalone
SimPut application.

3.2.2 Simulation Module
simulation.js is a simulation module bundled by web-

pack [10] consisting of a json file, definitions.json, con-
taining input deck definitions; a javascript file, transform.
js, that transforms the Web entered data; a directory, html,
of html help documentation; and a Jade template file, ex-
port.jade, to export the formatted simulation input deck.

The definitions.json defines the simulator input deck
parameters completely for all paths. The main required
categories include: order – the order to present the views
in SimPut; views – the organization of attributes within a
view; and definitions – the definition of attributes, typically
keyword-value pairs, of the simulation including: type, for-
mat and style. The transform.js is a JavaScript file that
transforms the extracted Web-form data to the Jade data
model for input deck generation. It consists of specialized
extraction functions to pull the data from the forms for each
attribute defined in definitions.json. The help directory
contains an html file per possible element in input deck.
These are presented as html, not as plain text, to provide
an expanded palette to express the intent of the desired in-
put. Finally, the export.jade file is a Jade template that
formats the input deck per simulator format requirements.

The simulation.js module, for each simulator to be ex-
posed in HPCCloud, must be distributed with the platform.
These modules are extremely lightweight, that is less than a
megabyte per simulator, and can be used within HPCCloud
or via a server-less, standalone desktop Web application.

3.2.3 Presentation Layer
The presentation layer for SimPut is rich and simulation

aware. The keyword-value pair format of the input deck
does not have to be presented without thought to the end-
user. Instead, the information can be requested in a se-
quence and form that makes the conceptual intent clear to
common scientists, engineers and technicians. SimPut does
not require computational science and engineering expertise
(see Figure 7). Rather, it requires domain knowledge of the
problem.

Thus, the view can take a form that more closely resembles
the intent of the requested information. In Figure 8, we
see that the thermal conductivity tensor of a material is
presented as an upper 3-by-3 matrix as opposed to a list of
keyword-value pairs (k11=1.0, k12=0.0, k13=0.0, k22=1.0,

Figure 8: The presentation of the thermal conduc-
tivity tensor in SimPut (top) and the help entry for
the same element of the input deck (bottom).

k23=0.0, k33=1.0). Documentation is also placed as close as
possible to the element. Simply hit the question mark next
to the element, and the help information is presented below
the element. There is no popup window blocking access to
either the element or the help, and there is no need to bring
up another application that presents help documentation.

3.3 Integration of 3D Pre- and Post-processing
Tools

To be e�cient and e↵ective, the Cloud/Web-based simu-
lation platform requires three-dimensional graphics and vi-
sualization for both pre-processing and post-processing to
enable simple to complex advanced modeling and

Figure 9: The mesh tagging application allows the
end-user to visualize and annotate material, element
and side sets of the simulation mesh. In this image,
we see set ID 3 (in purple), which represents a nu-
clear reactor fuel pin, and set ID 8 (in blue), which
represents a mixing at startup that indicate tran-
sient behavior possibly associated with the lower-
plenum flow anomaly. The end-user uses a pop-up
dialog to assign set ID 8 as a mixing vane.

simulation workflows. Hence, we leveraged ParaViewWeb
the Web analysis and visualization framework.

3.3.1 ParaViewWeb
ParaViewWeb is a collection of components that expose

ParaView’s analysis and visualization capabilities withinWeb
applications. ParaViewWeb relies on the latest HTML 5.0
technologies, such as WebSocket [11] and WebGL [9], and
works with both desktop and mobile Web browsers.

At its core, ParaViewWeb simplifies communication with
a ParaView server running on a remote visualization node or
cluster using a lightweight API, which utilizes Autobahn’s
Python and JavaScript WAMP [8] client libraries. Using
this API, Web applications can easily embed interactive
three-dimensional visualization components leveraging the
ParaView and/or Visualization Toolkit (VTK).

For the platform, we enhanced Cumulus, the Girder plu-
gin, to route front-end request for ParaViewWeb applica-
tions to the ParaView servers running on private networks
that Cumulus launched from Amazon Web Services cloud
resources. Cumulus stores a map of routes to the remote
ParaView servers, and supports the front-end requests to
the Apache server.

Figure 10: Visualizer’s interface provides access and
control to all of the ParaView framework. In this
example, we have built a sophisticated visualization
pipelines of the pressure (isosurfaces and isolines)
and velocity (streamlines colored by vorticity) in
water flow through a mixing vane around a single
nuclear reactor pin.

3.3.2 Mesh Tagging
In several advanced modeling and simulation workflows,

the mesh represents the discretization of the problem, or
specific geometric model, based on the employed numerical
methods. For pre-processing, it is convenient to decompose
the mesh into entities, sets and tags. Entities are elements
of the mesh such as vertex, edge, triangle, etc. Sets are arbi-
trary groupings of mesh entities and/or other sets. Tags are
named data which can be assigned to the mesh as a whole,
individual entities, or sets. The combination of these three
elements represents a powerful yet simple interface for repre-
senting metadata or application-specific data. For example,
entities, sets and tags can be used together to describe geo-
metric topology such as boundaries in a mesh.

The mesh tagging application shown in Figure 9 (powered
by ParaViewWeb) allows the end-user to provide meaningful
names to material, element, and side sets. These meaningful
names will in turn be presented to the end-user in SimPut,
when defining a simulation’s material properties, initial con-
ditions, boundary conditions, forces, and sources.

3.3.3 Visualizer
Visualizer allows interactive analysis and visualization that

is similar to the capabilities of the ParaView Qt application.
The platform leverages the Visualizer application, depicted

in Figure 10 for interactive analysis and visualization of sim-
ulation results. Note that the control panels can be hidden
by clicking on the ParaViewWeb logo. With Visualizer, the
end-user seamlessly develops sophisticated analysis and vi-
sualization pipelines based on ParaView sources and filters
with complete control of the sources, representations and
views. Visualizer is easier to use than the ParaView Qt
application, because the environment is setup (MPI clien-
t/server, file access, ...) for the end-user, without degrada-
tion in visual quality, utility or performance.

4. RESULTS
The innovations in data/task management system, simple

input deck definition, and integration of three-dimensional
pre- and post-processing tools combine to make the Cloud/
Web-based simulation environment platform easy-to-use. In
this section, we discuss results from complete advanced mod-
eling and simulation workflows on important industry prob-
lems.

4.1 Hydra–TH CFD Software
For testing purposes, we utilized Hydra–TH [16, 17] devel-

oped as part of the Hydra Toolkit (Hydra) for scalable scien-
tific simulation, led by Dr. Mark A. Christon, Senior Scien-
tist at Los Alamos National Laboratory. The Hydra archi-
tecture provides lightweight, high performance, and reusable
code components for agile application development. Hydra
has been used for methods and algorithms research with a
broad array of physics, discretization techniques, and solu-
tion methods. Currently the toolkit supports finite-element
solvers, multiple hydrodynamics solvers, ridged-body dy-
namics, and more. Additionally, finite-volume solvers are
also available.

Figure 11: Visualization of the GTRF problem: The
single rod, spacer, and mixing vanes (in grey) with
pressure isosurfaces and velocity streamlines.

Hydra–TH has been developed for the Consortium for Ad-
vanced Simulation of Light-Water Reactors (CASL) to cre-
ate a computational capability that enables the simulation
of the thermal–hydraulics processes inside a nuclear reactor
at unprecedented fidelity. These simulations can use tens of
thousands of compute cores on the largest supercomputers
in the world and enable the detailed resolution of turbulent
flow fields and their interaction with the reactor fuel assem-
bly.

4.1.1 Grid-to-Rod Fretting Problem
The grid-to-rod fretting (GTRF) problem in pressurized

water reactors is a flow-induced vibration problem that re-
sults in wear and failure of the rods in nuclear fuel assem-
blies. Currently, it has not been possible to completely char-
acterize the flow-induced fluid-structure interaction (FSI)
problem for the GTRF problem. Indeed, given the incom-
pressible nature of the coolant, the relatively high Reynolds
number, and the flexible character of the fuel rods and spac-
ers, the FSI problem at the reactor core scale is daunting.
Recent advances with Hydra–TH may be found in refer-
ences [16, 18].

In this paper, we ran a Smagorinsky subgrid-scale model
turbulence with Smagorinsky model constant of 0.18 for a
representative single rod with three spacers. Hydra–TH is
used to compute the time-accurate and fully three-dimension-
al flow field for the single rod.

Figure 12: Visualization of the LPFA problem: The
vessel (transparent grey) and pressure isosurfaces at
startup.

4.1.2 Lower Plenum Flow Anomaly Problem
The second problem involved simulating a known reactor

flow anomaly, Lower Plenum Flow Anomaly (LPFA), with
Hydra-TH to develop a better understanding of the sensi-
tivity of the flow distribution to di↵erential inlet flow.

We ran a Spalart-Allmaras model turbulence for a rep-
resentative reactor vessel. Hydra–TH is used to simulate
reactor flow in the lower plenum during the pump startup
sequence with an objective of identifying actions to reduce
(or at least control) the variation.

4.2 Performance
Timings were performed on both the GTRF and LPFA

problems, but, given their similar problem size and perfor-
mance characteristics, we simply report the results of the
GTRF problem.

The Hydra–TH input deck (4 KB) and single rod with
spacer mesh (232 MB) represented an approximately 4 mil-
lion cell simulation that was run for 1000 time steps. The
Running time included computation, MPI-based commu-
nication, output of parallel results file (total of approxi-
mately 5.5 GB) at every 10 timesteps, and dumping a restart
file (approximately 500 MB) at the 0 timestep and 1000
timestep.

We leveraged Amazon’s EC2 resizable compute capacity
in the cloud for all performance results. In particular, we
utilized the C4 instances featuring high frequency Intel Xeon
E5-2666 v3 (Haswell) processors with enhanced networking
and clustering.

For the Figure 13 and Figure 14, a c4.large EC2 instance
was used, which provides 2 cores, 3.75 GB of main memory,
and dedicated EBS storage with 500 Mbps throughput.

Figure 13: Timings, in milliseconds, of Cloud-based
run of a single pin with a mixing vane from 4 to 64
nodes (on 2 core nodes).

In Figure 13, we see expected speedup similar to that
of our on-premise high-performance computing cluster. As
the number of cores increases from 8 cores to 128 cores (in
the graph this maps to 4 nodes with 2 cores each to 64
nodes with 2 cores each), we see the overall simulation time
decrease from approximately 500 minutes to 141 minutes.
The turnover represented after 16 nodes or 32 cores simply
implies that the money spent moving to 64 cores and 128
cores provided a smaller return for investment.

Figure 14: The performance in milliseconds of just
download, queued, shutdown, startup and upload.

Figure 14 depicts the other time costs surrounding the
simulation including:

• Download - The time to ship the input deck and mesh
to the cluster nodes from the data management sys-
tem;

• Queued - The time spent in the Sun Grid Engine queu-
ing system;

• Shutdown - The time to shutdown (release) the EC2
instances of the cluster;

• Startup - The time to startup a cluster from EC2 in-
stances; and

• Upload - The time to upload the results to the data
management system.

The download and queued time for a simulation is negligi-
ble. Starting up and shutting down a cluster is fairly uniform
at approximately two minutes regardless of whether we are
creating a single node cluster or a 64 node cluster. We be-
lieve that most advanced modeling and simulation end-users
would be overjoyed with the platform’s time until run per-
formance when compared to the time spent in queue with
their on-premise resources. The most concerning metric in
Figure 14 is the upload time. As our problems grow, both
our download and upload times will grow, but this concern
can be remediated by creating persistent high-performance
storage instance o↵ered by OrangeFS, Lustre, and other cus-
tomized solutions.

Table 1: EC2 Instances
Model vCPU Memory EBS Throughput

c4.large 2 Cores 3.75 GB 500 Mbps
c4.xlarge 4 Cores 7.5 GB 750 Mbps
c4.2xlarge 8 Cores 15 GB 1,000 Mbps
c4.4xlarge 16 Cores 30 GB 2,000 Mbps

Table1 shows the EC2 instances used in the timings de-
picted in Figure 15 measuring the e↵ects of node core den-
sity.

With a 10 Gbps Ethernet interconnect, we see interpro-
cessor communication time increasing with the number of
cores per node. We would expect the communication time
to flatten out as the interconnect speed increases. But, even
if the interconnects don’t evolve as fast as compared to on-
premise resources, eventually simulations on both EC2 and
on-premise resources present opportunities from modified al-
gorithms that take advantage of multiple core and possibly
many core architectures.

Figure 15: Timing, in milliseconds, of Cloud-based
run of a single pin with a mixing vane from 16 to 128
cores where we varied the node core density from 2
cores per node to 16 cores per node.

5. CONCLUSION
We have developed a novel platform for an end-to-end, ad-

vanced modeling and simulation Cloud/Web-based simula-
tion environment that encapsulates best practices for scien-
tific computing in the cloud. As implemented in this paper,
the platform makes advanced modeling and simulation (1)
easy to use, (2) by industry’s core competency employees;
and (3) eliminates high capital costs.

We have demonstrated the platform using open-source
tools and shown how scientists and engineers can easily ex-
plore industry relevant advanced modeling and simulation
problems. Our results demonstrate significant improvement
in ease of use based on the end-to-end solution, especially
when considering the number of applications required to rep-
resent the complete workflow. The results section demon-
strates that the performance is comparable to on-premise
resources. Finally, we have shown that HTML5, CSS3, mod-
ern JavaScript ES6, customized REST API, mobile-first de-
signs and single-page applications have made creating easy
to use and understand front-ends for Web-based simulations
possible.

6. ACKNOWLEDGMENTS
This work was funded by Mr. Dan Funk, NEAMS Pro-

gram, O�ce of Nuclear Energy, Department of Energy (DOE),
Fast Track SBIR award DE-SC0010119 and Phase I SBIR
award DE-SC0012037. Funding for Mark Christon, Markus
Berndt, and Andy Bauer was provided by the Consortium
for Advanced Simulation of Lightwater reactors (CASL).
We are indebted to Annalisa Manera and Victor Petrov,
both of the Nuclear Engineering and Radiological Sciences
at the University of Michigan, for the GTRF model, and
Rose Montgomery, of the Tennessee Valley Authority, for
the LPFA model. Finally, we thank Scott Wittenburg for a
number of the visualizations that appear in the paper.

7. REFERENCES
[1] ParaView. Online - http://www.paraview.org/, June

2010.
[2] VTK. Online - http://www.vtk.org/, June 2010.
[3] Celery. Online - http://www.celeryproject.org, April

2015.
[4] Girder. Online - http://www.tangelohub.org/girder/,

April 2015.
[5] MongoDB. Online - https://www.mongodb.org, April

2015.
[6] RabbitMQ. Online - http://www.rabbitmq.com, April

2015.
[7] VisIt. Online - http://visit.llnl.gov, June 2015.
[8] WAMP. Online - http://wamp.ws, April 2015.
[9] WebGL. Online - https://www.khronos.org/webgl/,

April 2015.
[10] webpack. Online - http://webpack.github.io, April

2015.
[11] WebSockets. Online - https://www.websocket.org,

April 2015.
[12] J. Arhens, K. Brislawn, K. Martin, B. Geveci, C. Law,

and M. Papka. Large scale data visualization using
parallel data streaming. IEEE Computer Graphics and
Applications, 4(21):34–41, 2001.

[13] D. A. Benson, K. Clark, I. Karsch-Mizrachi, D. J.
Lipman, J. Ostell, and E. W. Sayers. GenBank.
Nucleic Acids Research, 2013.

[14] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242, 2000.

[15] H. Childs, E. S. Brugger, K. S. Bonnell, J. S.
Meredith, M. Miller, B. J. Whitlock, and N. Max. A
contract-based system for large data visualization. In
Proceedings of IEEE Visualization 2005, pages
190–198, 2005.

[16] M. A. Christon. Hydra-TH Theory Manual. Technical
Report LA-UR 11-05387, Los Alamos National
Laboratory, September 2011.

[17] M. A. Christon, J. Bakosi, M. M. Francois, B. Nadiga,
M. Berndt, and A. K. Stagg. A hybrid incremental
projection method for thermal-hydraulics applications.
in preparation for CASL Special Issue Journal of
Computational Physics, 2014. ((Los Alamos National
Laboratory LA-UR 14-28406).

[18] M. A. Christon, R. Lu, J. Bakosi, B. Nadiga,
Z. Karoutas, and M. Berndt. Large-eddy simulation,
fuel rod vibration and grid-to-rod fretting. in
preparation for CASL Special Issue Journal of
Computational Physics, 2014. (Los Alamos National
Laboratory LA-UR 14-28497).

[19] L. Heulers, F. Fernex, and N. Leclaire. LATEC : A
generic workbench dedicated to criticality calculations.
In International Conference on Nuclear Criticality
2011. ICNC 2011., September 2011.

[20] A. Hines, S. Howington, B. White, O. Eslinger,
C. Kees, M. Farthing, R. O’Bara, R. Blue, Y. Yaun,
A. Bauer, and B. King. Computational Model Builder
(CMB): A Cross-Platform Suite of Tools for Model
Creation and Setup. 2009 DoD High Performance
Computing Modernization Program Users Group
Conference, pages 370–373, 06 2009.

[21] C. Ivica, J. Riley, and C. Shubert. StarHPC –
Teaching parallel programming within elastic compute
cloud. In Information Technology Interfaces, 2009. ITI
’09. Proceedings of the ITI 2009 31st International
Conference on, pages 353–356, June 2009.

[22] S. Jourdain, S. Wittenburg, and P. O’Leary. Python
Enabled ParaViewWeb for HPC Analysis and
Visualization. In Python in HPC Workshop,
International Conference for High Performance
Computing, Networking, Storage and Analysis (SC
’14), November 2014.

[23] J. Kuljis and R. J. Paul. A Review of Web Based
Simulation: Whither We Wander? In Proceedings of
the 32Nd Conference on Winter Simulation, WSC ’00,
pages 1872–1881, San Diego, CA, USA, 2000. Society
for Computer Simulation International.

[24] J. Long, P. Spencer, and R. Springmeyer. SimTracker
- Using the Web to track computer simulation results.
In Proceedings of the1999 International Conference on
Web-Based Modeling and Simulation, August 1999.

[25] A. McCaskey, T. Patterson, and J. J. Billings.
Modernizing Simulation Input Generation and
Post-Simulation Data Visualization with Eclipse ICE
@EclipseCon North America 2015, online -

http://goo.gl/v1n6wx, March 2015.
[26] R. Moore. Data Management Systems for Scientific

Applications. In Proceedings of the IFIP TC2/WG2.5
Working Conference on the Architecture of Scientific
Software, pages 273–284, Deventer, The Netherlands,
The Netherlands, 2001. Kluwer, B.V.

[27] A. Ribes and C. Caremoli. Salome platform
component model for numerical simulation. In
Computer Software and Applications Conference,
2007. COMPSAC 2007. 31st Annual International,
volume 2, pages 553–564, July 2007.

[28] W. Schroeder, K. Martin, and B. Lorensen. An Object
Oriented Approach to 3D Graphics. Kitware, Inc., 4
edition, 2004.

[29] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. Beowulf: A
Parallel Workstation For Scientific Computation. In In
Proceedings of the 24th International Conference on
Parallel Processing, pages 11–14. CRC Press, 1995.

[30] K. Wong. A Map to Simulation on the Cloud
@Desktop Engineering, online - http://goo.gl/ijvbuc,
July 2014.

