
Simulation of a backward facing step using

hydra-th
2015
G. Cartland Glover

13th November 2015

Abstract

Simulations of a backward facing step, where a Poiseuille flow profile is applied to the inlet
condition have been performed. The code hydra-th is used. Three Reynolds numbers,
Re, were used (300, 600 and 800), which are in the laminar regime. The percentage error
in comparison to simulated values obtained from relevant literature was less than −4% at
Re =300, ±5% at Re =600 and ±10% at Re =800.

1 Introduction

To verify the open source fluid dynamic codes we use, simple tests cases are being devel-
oped. The cases should be quick to run and have analytical or results published in literature
against which comparisons can be made. In this report, we discuss the simulation of a back-
ward facing step, with a Poiseuille flow profile applied to the inlet condition. The locations
of at the separation and reattachment points were compared with literature values reported
by Barton (Barton, I. E., A numerical study of flow over a confined backward-facing step,
International Journal for Numerical Methods in Fluids 21(8), 653–665, 1995).

The code used here is hydra-th (https://get-hydra.lanl.gov/), a highly parallelis-
able code developed at Los Alamos National Laboratory for the Consortium for the Ad-
vanced Simulation of Light Water Reactors (CASL) lead by Oak Ridge National Laboratory
(http://www.casl.gov/Hydra.shtml). hydra-th is a cell-centred incompressible flow
solver using a discontinuous Galerkin framework with a hybrid finite element/finite volume
discretisation, which reduces to a finite volume method as the resolution is reduced. A high
resolution advection algorithm can apply both implicit and explict advection, while time inte-
gration includes the backward Euler and trapezoidal methods.

2 Models

The flow domains considered were simple two-dimensional geometries. The mesh used
was 1 cell thick due to solver requirements with no-slip walls applied at the upper and lower
surfaces (Fig. 1). At the upstream end, an inlet condition is applied on the upper half of the
surface with a no-slip wall on the lower half. An outlet condition is applied at the downstream
end. The height of the domain, H, was specified as 1.0m and the height of the inlet was
H/2.

Two domains of lengths 15H and 30H were used. Only one mesh was specified for the 15H
case, which was used as an equivalent mesh for direct comparison with Mesh 7 employed
by Barton (1995).

A Poiseuille profile with a mean velocity of 1m s−1 was applied to the inlet condition via the
user function given in Appendix A. This was applied by the line user velx sideset 1
in the control file found in Appendix B. The pressure at the downstream boundary was de-
fined as 0.0 kg m−1 s−2 with all other surfaces undefined. The front and back surfaces of
the meshes were also treated as symmetry conditions by applying a 0.0m s−1 value to the z
component of the velocity.

The fluid was defined in terms of the Reynolds number, Re, where the characteristic di-
mension was H = 1m. A density of 1.0 kg m−3 was assumed and the viscosity was ad-
justed to give Re = 300, 600 and 800. This gave viscosities of 3.333× 10−3, 1.666× 10−3 and
1.25× 10−3 kg m−1 s−1.

The simulations were performed as transient calculations with an adaptive timestep based
on the maximum Courant number observed in the flow domain. The initial and maximum
time step sizes also control how the calculation proceeds until the maximum time is reached.
These parameters are defined as 1× 10−3 time units and 0.2 time units. A total time of up to
600.0 time units was specified to allow the convergence of the velocity components and the
pressure at points near to the reattachment and separation points.

1

https://get-hydra.lanl.gov/
http://www.casl.gov/Hydra.shtml

H

yH/2 = 0.5; uH/2 = 0x2 x3

P = 0

x1 y−H/2 = −0.5; u−H/2 = 0

x
y

Figure 1: Geometrical configuration and boundary conditions applied to backward
facing step under Poiseuille flow conditions with the rough location of the separation
(x2) and reattachment (x1 and x3) points. Recirculation loops are indicated by blue
vectors. They are located below the inlet and upstream of x1 as well as between
x2 and x3. The flow profile applied at the inlet and the expected flow profile in the
downstream section are also coloured blue.

Two solvers were applied to the resolve the continuity equations of mass and momentum.
These were the ppesolver and the momentumsolver. A transportsolver was spec-
ified, but it was not used. An algebraic multigrid solver was used for the ppesolver, while
the flexible generalised minimum residual method was used for the momentum transport
equations. Note that the momentumsolver was preconditioned by an incomplete LU fac-
torisation.

The flow fields were analysed with pvpython by plotting the data on 15m lines that were
located 1× 10−3 m from the upper and lower surfaces (see Appendix C for the corresponding
script). These data was then extracted in the form of a comma separated values file. The file
contains data of the pressure, the velocity components and the components of the vorticity.
A NumPy–Python script was prepared and used to interpolate (numpy.interp) the loca-
tions at which the streamwise velocity component was zero from each datafile containing the
extracted data (see Appendix C). A similar analysis was performed using the z-component of
the vorticity, as a similar transition between positive and negative values was also observed
at the reattachment and separation points. Information on the maximum pressure and the
key variables at this location was also extracted. These data are not presented here, as
the maximum pressure of each dataset is downstream of the reattachment and separation
points.

3 Results

Tables 1-6 in Appendix D present the separation (x2) and reattachment points (x1 and x3)
of the flow on the upper and lower surfaces of the backward facing step domain. Table 1
gives results obtained from Barton (1995) including the values of Gartling (1990) that were
reported therein. The values of x1, x2 and x3 reported by Barton (1995), were given in terms
of the dimensionalisation that was used. The dimensions of the duct Barton (1995) used
were 2H by 30H with an inlet height of H that was H above the lower surface. Consequently
the values of x1, x2 and x3 are twice the values calculated by the geometries reported here.
Therefore, the corresponding values for the dimensionalisation used here are given in Table
1 in parentheses.

Eight meshes were used in the simulation of the backward facing step with resolutions be-
tween the coarsest of 41 nodes by 801 nodes and the finest of 161 by 4001. Node doubling
was performed between y-component resolutions of 41 and 161 at an x-component resolu-
tion of 1001. Node doubling was also performed between 41 by 1001 and 161 by 4001. A

2

mesh that was equivalent to Mesh 7 used by Barton (1995) with the corresponding aspect
ratio was also simulated. The meshes had uniform node distributions with the exception of
the two meshes, which had 41 by 801 nodes and 101 by 1803 nodes. The first 15m of these
meshes were defined as uniform meshes with 501 and 1501 nodes in the x-component di-
rection. Beyond the 15m section, variable node distributions from fine at 15m to coarse at
the outlet, were applied with the remaining nodes (i.e. 300 and 302 nodes).

3.1 Re = 300

Table 2 gives the values of x1 at Re = 300. The average value of intersection point where
the streamwise velocity component crosses the abscissa (from here on referred to as the
intersection point) was 3.52m downstream of the inlet. The corresponding average for the
z-component of the vorticity was 3.51m.

The percentage error relative to Barton’s reported value varied between −3.3% (41 by 801)
and −0.9% (161 by 4001) for the position determined by the intersection point of the x-
component velocity, while for the z-component vorticity it varied between −4.0% (41 by 801)
and −1.0%(161 by 4001).

The effect of node doubling on the accuracy of x1 is most significant in the y-component
direction, while the effect is negligible in the x-component direction when more than 1000
nodes are considered. The position of x1 also moves downstream as the resolution in the
y-component direction is doubled. There is an exception when the resolution is changed
between the 101 by 201 and the 101 by 1803. Between these cases there was ∼0.25%
decrease in the error.

3.2 Re = 600

Tables 3-4 provide the values of x1, x2 and x3 at Re = 600. The respective averaged values of
the intersection point for the streamwise velocity component were 5.26m, 4.40m and 8.02m
downstream of the inlet. The corresponding averages for the z-component of the vorticity
were 5.25m, 4.44m and 7.98m.

The percentage error relative to Barton’s reported values varied between −3.9% (41 by
1001) and 0.02% (101 by 201) for the position determined by the intersection point of the x-
component velocity at x1, x2 or x3. When examining the z-component vorticity, the locations
varied between −4.3% (41 by 801) and 0.03% (101 by 1803). Generally, the x2 values were
further away from the values for Barton’s Mesh 7 than either x1 or x3.

The effect of node doubling in the y-component direction on x1 was that it’s position shifted
from upstream of Barton’s value to downstream of it. The finer meshes had an error of less
than 1%. In the case of x2, it is always downstream of Barton’s value with no discernable
improvement in the accuracy. x3 is always upstream of the corresponding location, though it
does approach Barton’s value as the resolution is increased. As for Re = 300, the effect of
the number of nodes in the x-component direction is not as significant compared with in the
y-component direction.

3

3.3 Re = 800

Tables 5-6 give the values of x1, x2 and x3 at Re = 800. The respective averaged values of
the intersection point for the streamwise velocity component were 5.94m, 4.83m and 10.33m
downstream of the inlet. The corresponding averages for the z-component of the vorticity
were 5.93m, 4.87m and 10.29m.

The percentage error relative to Barton’s reported value varied between −8.7% (41 by
801) and 0.25% (101 by 201) for the position determined by the intersection point of the x-
component velocity. In comparison, the location of the intersection point for the z-component
vorticity were between −9.3% (41 by 801) and 0.2%(161 by 4001).

At Re = 800, the x3 values were further away from Barton’s data than either x1 or x2. In fact
the values for x3 correspond better with the values of Gartling (Gartling, D. K., A test problem
for outflow boundary conditions – flow over a backward-facing step, International Journal for
Numerical Methods in Fluids 11(7), 953–967, 1990) reported by Barton. Note that Barton
also indicated that his values were 1 unit further downstream than those reported in the lit-
erature without giving any possible explanation. The values of x1 and x2 reported by both
Barton and Gartling are similar and the simulations performed here either approach the re-
ported values (x1) or cover the space between the reported values of Barton and Gartling
(x2).

The effect of node doubling on x1 resulted in a reduction of the error and a shift from the
upstream side of Barton’s value to the downstream side with the most significant changes
observed between the doubling between 41 and 81 nodes; however, meshes above 100
nodes in the y-component direction produced the most accurate values with errors less than
1%. As for Re = 600, there is no discernable improvement in the value of x2 at higher res-
olutions, but at Re = 800, the location of x2 shifts downstream from the upstream side of
Barton’s value and beyond. The change in x3 as the number of nodes is doubled follows the
behaviour of x1 except that the error has a greater significance, as previously mentioned due
to the differences between Barton’s and Gartling’s value for x3.

3.4 Differences between the velocity and vorticity intersection points

It is apparent from the data in Table 2, Table 3 and Table 5 that the difference between the
intersection point for the x-component velocity and the z-component vorticity reduces as the
meshes are refined. The smallest differences occurred for the meshes with more than 100
nodes in the y-component direction and 1000 nodes in the x-component direction.

The corresponding data is not presented in Table 4 and Table 6 for x2 or x3 for reasons of
clarity, but the differeneces are between the respective intersection points are 2.5 and 3.7
times greater than the values in Table 3 for Re = 600, while for Re = 800, the values are 2.8
and 4 times greater than the values in Table 5. This suggests that even the best mesh needs
further refinement in order to capture better the separation and reattachment points at the
upper surface. This is was also indicated by Barton, in that he found x2, the separation point,
as the hardest point to resolve.

4

4 Conclusions

Simulations of flow over a backward facing step have been performed using the open source
code hydra-th. The locations of the separation and reattachment on the upper and lower sur-
faces were compared with those reported by Barton (1995). A number of mesh refinements
were applied, and it was found that the resolution across the flow (i.e. y-component direction)
had the strongest effect on the accuracy of the simulations.

5

5 Nomenclature

Latin symbols

x1 Reattachment point on the lower surface (m).
x2 Separation point on the lower surface (m).
x3 Reattachment point on the upper surface (m).
Nx Number of nodes in the x-direction (-).
Ny Number of nodes in the y-direction (-).
P Pressure (kg m−1 s−2).
u Velocity vector (m s−1).
ux local x-direction velocity component (m s−1).
uy local y-direction velocity component (m s−1).
uz local z-direction velocity component (m s−1).
x x-direction component (m).
y y-direction component (m).
z z-direction component (m).

Greek symbols

ωz z-component of the vorticity (s−1).

6

A User Velocity Condition

Listing 1: C++ Code for User Velocity condition
1 //**
2 /*!
3 \file src/FVM/CCIncNavierStokes/UserBCs/UserVelBC.C
4 \author Yidong (Tim) Xia
5 \date Thu Jul 14 12:46:23 2011
6 \brief User defined velocity boundary condition based on sidesets
7 */
8 //**
9 #include <cmath>

10

11 using namespace std;
12

13 #include <CCINSUserVelocityBC.h>
14 #include <UnsMesh.h>
15 #include <BCPackage.h>
16

17 using namespace Hydra;
18

19 Real
20 CCINSUserVelocityBC::setUserVel(UnsMesh& /* mesh */,
21 Material& /* mat */,
22 int /* edgeId */,
23 Real* coord,
24 Real /* time */) const
25 /***
26 Routine: setUserVel - set a function for velocities
27 Author : Yidong (Tim) Xia
28 ***/
29 {
30 // Get the physical properties upon your need
31 // Real mu = mat.Viscosity();
32

33 // Define parameters upon your need
34

35 // Input specific functions
36 Real bcval = 0.0;
37 switch(m_direction) {
38 case GLOBAL_XDIR:
39 // Prescribe your x-velocity
40 //bcval = PI*cos(PI*coord[0])*sin(PI*coord[1])*exp(-2.0*PI*PI*mu*time);
41

42 // CHT test problem
43 //bcval = (3*0.00134/2)*(1-pow((coord[1]/0.01),2.0));
44 //bcval = (3*0.827/2)*(1-pow(((coord[1]-0.5)/0.5),2.0));
45

46 // Backward facing step for parallel plane Poiseuille flow 2h = 1, midpoint
0.25 or 0.75

47 bcval = (3.0/2.0)*(1.0-pow(((coord[1]-0.25)/0.25),2.0));
48 break;
49 case GLOBAL_YDIR:
50 // Prescribe your y-velocity
51 //bcval = -PI*sin(PI*coord[0])*cos(PI*coord[1])*exp(-2.0*PI*PI*mu*time);
52 bcval = 0.0;
53 break;
54 case GLOBAL_ZDIR:
55 // Prescribe your z-velocity

7

56 bcval = 0.0;
57 break;
58 default:
59 assert("Unknown user velocity boundary condition direction" == 0);
60 }
61 return bcval;
62 }
63

64 Real
65 CCINSUserVelocityBC::setUserAcc(UnsMesh& /* mesh */,
66 Material& /* mat */,
67 int /* edgeId */,
68 Real* /* coord */) const
69 /***
70 Routine: setUserAccX - set a user-defined function for acceleration
71 Author : Yidong (Tim) Xia
72 ***/
73 {
74 // Get the physical properties upon your need
75 // Real mu = mat.Viscosity();
76

77 // Define parameters upon your need
78 // Real rp = -2.0*PI*PI*mu;
79

80 // Input specific functions
81 Real bcval;
82 switch(m_direction) {
83 case GLOBAL_XDIR:
84 // Prescribe your x-acceleration
85 // bcval = PI*cos(PI*coord[0])*sin(PI*coord[1])*rp*exp(rp*time);
86 bcval = 0.0;
87 break;
88 case GLOBAL_YDIR:
89 // Prescribe your y-acceleration
90 //bcval = -PI*sin(PI*coord[0])*cos(PI*coord[1])*rp*exp(rp*time);
91 bcval = 0.0;
92 break;
93 case GLOBAL_ZDIR:
94 // Prescribe your z-acceleration
95 bcval = 0.0;
96 break;
97 default:
98 assert("Unknown user acceleration boundary condition direction" == 0);
99 }

100 return bcval;
101 }

8

B Control Files

Listing 2: Control file to specify simulation settings
1 title
2 Re=300, no entrance region
3

4 cc_navierstokes
5

6 nsteps 100000
7 deltat 0.001
8 term 600.0
9

10 solution_method
11 eps_p0 1.0e-8
12 end
13

14 time_integration
15 type fixed_cfl
16 CFLinit 1.0
17 CFLmax 2.5
18 dtmax 0.2
19 dtscale 1.025
20 thetaa 0.5
21 thetak 0.5
22 thetaf 0.5
23 end
24

25 # Output options
26 pltype exodusii
27 filetype serial
28 plti 100
29 ttyi 10
30 dump 000 # Interval to write restarts
31

32 # Material model setup & assignment to sets
33 material
34 id 1
35 rho 1.0
36 mu 0.00333333333333 # Re=300
37 end
38

39 materialset
40 id 10
41 material 1
42 block 1
43 end
44

45 plotvar
46 elem vel
47 elem volume
48 elem density
49 elem procid
50 elem div
51 elem vorticity
52 node vel
53 node pressure
54 node vorticity
55 end
56

9

57 histvar
58 elem 30000 vel
59 elem 30000 pressure
60 elem 2000 vel
61 elem 2000 pressure
62 elem 10311 vel
63 elem 10315 vel
64 end
65

66 # BC’s
67 # 1 - inlet
68 # 2 - top/bottom
69 # 3 - front/back
70 # 4 - outlet
71 # 5 - wall below inlet
72 # 6 - inlet (also 7 and 8)
73

74 pressure
75 sideset 4 -1 0.0 # Outlet
76 end
77

78 velocity
79 velx sideset 1 -1 1.0 # Inlet
80 user velx sideset 1
81 vely sideset 1 -1 0.0
82 velz sideset 1 -1 0.0
83 velx sideset 2 -1 0.0 # top/bottom wall
84 vely sideset 2 -1 0.0
85 velz sideset 2 -1 0.0
86 velx sideset 5 -1 0.0 # wall under inlet
87 vely sideset 5 -1 0.0
88 velz sideset 5 -1 0.0
89 velz sideset 3 -1 0.0 # back
90 end
91

92 ppesolver
93 type AMG
94 itmax 250
95 itchk 1
96 coarse_size 100
97 diagnostics off
98 convergence off
99 eps 1.0e-8

100 end
101

102 momentumsolver
103 type ILUFGMRES
104 itmax 50
105 itchk 2
106 restart 20
107 diagnostics off
108 convergence off
109 eps 1.0e-6
110 end
111

112 transportsolver
113 type ILUFGMRES
114 itmax 50
115 itchk 2
116 restart 20

10

117 diagnostics off
118 convergence off
119 eps 1.0e-6
120 end
121

122 end
123

124 exit

11

C Python Scripts

Listing 3: ParaView python script to extract data from plots over lines
1 import sys
2 infile = sys.argv[1] # first argument file name
3 (filename,sep,exten)=infile.rpartition(’.’) # strip path name and extenstion
4 from paraview.simple import * # import librarys
5 reader=OpenDataFile(infile) # load results file to reader array
6 # open graphics window
7 Show()
8 Render()
9 pd=reader.PointData # assign point data to array pd

10 print pd.keys() # print variable labels and ranges
11 for ai in pd.values():
12 print ai.GetName(),ai.GetNumberOfComponents,
13 for i in xrange(ai.GetNumberOfComponents()):
14 print ai.GetRange(i),
15 print
16 outfile1 = ’base’+filename+’.csv’
17 outfile2 = ’top’+filename+’.csv’
18 cd=reader.CellData # assign cell data to array cd
19 print cd.keys() # print variable labels
20 # plot velocity in graphics window
21 readerRep=GetRepresentation()
22 readerRep.ColorArrayName =’vel’
23 readerRep.LookupTable = AssignLookupTable(reader.PointData[’vel’],’Cool to

Warm’)
24 Render()
25 currentview=GetActiveView() # assign active view to currentview
26 currentsources=GetActiveSource() # assign active sources to currentsources
27 # annotate time to graphics window
28 annTime=AnnotateTimeFilter(currentsources)
29 Show(annTime)
30 tsteps=currentsources.TimestepValues # assign timestep values to array tsteps
31 print tsteps # print tsteps
32 nsteps=len(tsteps) # length of array tsteps and assign to array nsteps
33 print nsteps, tsteps[nsteps-1] # print nsteps and last value in tsteps array
34 currentview.ViewTime=tsteps[nsteps-1] # move data step to last time step
35 print currentview.ViewTime # print current time
36 Render() # render updated field in graphics window
37 for ai in pd.values(): # print variables and ranges to check difference from

previous
38 print ai.GetName(),ai.GetNumberOfComponents,
39 for i in xrange(ai.GetNumberOfComponents()):
40 print ai.GetRange(i),
41 print
42 npoints=5000 # number of data points
43 plot1 = PlotOverLine(currentsources) # use filter plotoverline
44 plot1.Source.Point1=[0,-0.499,0] # define line point 1
45 plot1.Source.Point2=[15,-0.499,0] # define line point 2
46 plot1.Source.Resolution=npoints # define line resolution
47 SaveData(outfile1,FieldAssociation="Points",Precision=8) # write data to file
48 plot2 = PlotOverLine(currentsources) # use filter plotoverline
49 plot2.Source.Point1=[0,0.499,0] # define line point 1
50 plot2.Source.Point2=[15,0.499,0] # define line point 2
51 plot2.Source.Resolution=npoints # define line resolution
52 SaveData(outfile2, Precision=8, FieldAssociation="Points") # write data to file

12

Listing 4: Interpolation of inflexion points
1 import sys,numpy # define libraries to use
2 infile = sys.argv[1] # first argument : file name
3 col1 = int(sys.argv[2]) # second argument : column for x-component velocity
4 col2 = int(sys.argv[3]) # third argument : column for the x coordinates i.e.

streamwise direction
5 col3 = int(sys.argv[4]) # fourth argument : column for the z-component vorticity
6 col4 = int(sys.argv[5]) # fifth argument : column for the pressure
7 # strip path and file name in different parts
8 (prefix, sep, suffix) = infile.rpartition(’.’)
9 (direct, sep2, filename) = prefix.rpartition(’/’)

10 (nodesy, sep3, nodesx) = direct.rpartition(’by’)
11 nx=int(nodesx) # number of nodes in x-direction
12 ny=int(nodesy) # number of nodes in y-direction
13 # define output files
14 outfile1 = prefix + ’.dat’ # space separated file
15 outfile2 = prefix +’.int’ # assessed data file
16 a = numpy.loadtxt(infile,delimiter=’,’,skiprows=1) # load file into array a,

ignoring the titles in row 1
17 numpy.savetxt(outfile1, a) # write space separated *.dat file for plotting in

gnuplot
18 nrows = len(a) # find length of a or number of rows
19 hnrows = nrows/2 # find midway point to enable interpolation of both inflexion

points at the upper surface
20 # identify lower and upper surface data sets
21 if filename[0]==’b’:
22 # lower surface
23 mrows = 0
24 x=a[mrows:nrows,col1] # assign x-component velocity to array x from start

to end of array
25 y=a[mrows:nrows,col2] # assign x-coordinates to array y from start to end

of array
26 z=-a[mrows:nrows,col3] # assign z-component vorticity to array y from start

to end of array
27 c=numpy.interp(0.0,x,y) # interpolate the x_1 reattachment point /

inflexion point of zero velocity
28 d=numpy.interp(0.0,z,y) # interpolate the x_1 reattachment point /

inflexion point of zero vorticity
29 diffcd=c-d # find the difference between the rettachment points estimated

by the velocity and vorticity
30 p=numpy.amax(a[:,col4]) # find the maximum pressure from the profile
31 parg=numpy.argmax(a[:,col4]) # find the row number of the maximum pressure
32 px=a[parg,col2] # return the x coordinate at the row number for the maximum

pressure
33 pu=a[parg,col1] # return the x-component velocity at the row number for the

maximum pressure
34 pvortz=a[parg,col3] # return the z-component vorticity at the row number for

the maximum pressure
35 g=numpy.column_stack((ny,nx,c,d,diffcd,parg,px,p,pu,pvortz)) # assign

assessed data to array g
36 numpy.savetxt(outfile2, g,delimiter=’&’) # write array g to *.int file
37 else:
38 # upper surface
39 mrows = 0
40 x1=-a[mrows:hnrows,col1] # assign x-component velocity to array x from start

to midpoint of array
41 x2=a[hnrows:nrows,col1] # assign x-component velocity to array x from

midpoint to end of array
42 y1=a[mrows:hnrows,col2] # assign x-coordinates to array y from start to

midpoint of array

13

43 y2=a[hnrows:nrows,col2] # assign x-coordinates to array y from midpoint to
end of array

44 z1=-a[mrows:hnrows,col3] # assign z-component vorticity to array y from
start to midpoint of array

45 z2=a[hnrows:nrows,col3] # assign z-component vorticity to array y from
midpoint to end of array

46 c=numpy.interp(0.0,x1,y1) # interpolate the x_2 separation point /
inflexion point of zero velocity

47 d=numpy.interp(0.0,x2,y2) # interpolate the x_2 separation point /
inflexion point of zero vorticity

48 e=numpy.interp(0.0,z1,y1) # interpolate the x_3 reattachment point /
inflexion point of zero velocity

49 f=numpy.interp(0.0,z2,y2) # interpolate the x_3 reattachment point /
inflexion point of zero vorticity

50 diffce=c-e # find the difference between the separation points estimated by
the velocity and vorticity

51 diffdf=d-f # find the difference between the rettachment points estimated by
the velocity and vorticity

52 p=numpy.amax(a[:,col4]) # find the maximum pressure from the profile
53 parg=numpy.argmax(a[:,col4]) # find the row number of the maximum pressure
54 px=a[parg,col2] # return the x coordinate at the row number for the maximum

pressure
55 pu=a[parg,col1] # return the x-component velocity at the row number for the

maximum pressure
56 pvortz=a[parg,col3] # return the z-component vorticity at the row number for

the maximum pressure
57 h=numpy.column_stack((ny,nx,c,d,e,f,diffce,diffdf,parg,px,p,pu,pvortz)) #

assign assess data to array h
58 numpy.savetxt(outfile2, h,delimiter=’&’) # write array h to *.int file

Listing 5: Averaging of inflexion points
1 import sys,numpy # define librarys to use
2 infile = sys.argv[1] # first argument : file name
3 # strip path and file name in different parts
4 (prefix, sep, suffix) = infile.rpartition(’.’)
5 outfile1 = prefix + ’.plot’ # space separated file
6 outfile2 = prefix +’.ave’ # averaged data file
7 a = numpy.loadtxt(infile,delimiter=’&’) # load file into array a, ignoring the

titles in row 1
8 numpy.savetxt(outfile1, a) # write data to space separated file for plotting
9 c=numpy.mean(a,axis=0) # calculate the mean

10 d=numpy.std(a,axis=0) # calculate the standard deviation
11 numpy.savetxt(outfile2, (c,d) ,delimiter=’&’) # write data to *.ave file

14

D Tables

The tables presented here compare the separation and reattachment points on the lower (x1)
and upper (x2 & x3) wall with those by Barton (Barton, I. E., A numerical study of flow over a
confined backward-facing step, International Journal for Numerical Methods in Fluids 21(8),
653–665, 1995) using Mesh 7. The values in brackets are percentage errors in respect to
the relavant reference value with the exception of Table 1, which were half of the correspond
values. This includes values at Re = 800 of a fine mesh simulation performed by Gartling
(Gartling, D. K., A test problem for outflow boundary conditions – flow over a backward-
facing step, International Journal for Numerical Methods in Fluids 11(7), 953–967, 1990),
which was reported by Barton (1990).

The values reported in the Tables 2-6 are half the values reported by Barton (1995) due
to differences in the non-dimensionalisation of the system studied. Barton (1995) used a
domain 2H high (H = 1.0), where the flow entered the domain through an inlet that was H
wide and positioned H above the base. Note that the domain used by Barton was 30H. The
domains used here were H high with H/2 for the inlet width located H/2 above the base.
The domains were 30H long with the exception of the 101 by 201 which was 15H.

Table 1: Values of x1, x2 and x3 reported by Barton (1995), where Mesh 7 was
used. Values in parentheses are the half values. ∗: Values reported by Barton of
Gartling’s fine mesh simulation at Re = 800;

Re x1 x2 x3

300 7.170 (3.585) - -

600 10.610 (5.305) 8.570 (4.285) 16.240 (8.120)

800 12.090 (6.045) 9.540 (4.770) 22.210 (11.105)

800∗ 12.200 (6.100) 9.700 (4.850) 20.960 (10.480)

15

Table 2: Comparison of x1 values at Re = 300 with percentage errors in parenthe-
ses. The reference value for the reattachment length at the base of the domain is
x1 =3.585, half of the values reported by Barton (1995). ∗: Mesh given in testing
suite of hydra-th; †: Equivalent to Barton’s Mesh 7;

Ny Nx x1,ux=0 x1,ωz=0 x1,ux=0 − x1,ωz=0

101† 201 3.533 (−1.45) 3.522 (−1.75) 1.09× 10−2

101 1803 3.541 (−1.22) 3.532 (−1.48) 9.41× 10−3

41∗ 801 3.466 (−3.31) 3.443 (−3.97) 2.39× 10−2

41 1001 3.466 (−3.31) 3.443 (−3.97) 2.39× 10−2

81 1001 3.531 (−1.51) 3.518 (−1.87) 1.29× 10−2

161 1001 3.553 (−0.90) 3.546 (−1.10) 7.26× 10−3

81 2001 3.531 (−1.49) 3.520 (−1.83) 1.19× 10−2

161 4001 3.554 (−0.86) 3.547 (−1.05) 6.63× 10−3

16

Table 3: Comparison of x1 values at Re = 600 with percentage errors in parenthe-
ses. The reference value for the reattachment length at the base of the domain is
x1 =5.305, half the reported values. ∗: Mesh given in testing suite of hydra-th; †:
Equivalent to Barton’s Mesh 7;

Ny Nx x1,ux=0 x1,ωz=0 x1,ux=0 − x1,ωz=0

101† 201 5.306 (0.02) 5.295 (−0.19) 1.11× 10−2

101 1803 5.316 (0.21) 5.306 (0.03) 9.58× 10−3

41∗ 801 5.101 (−3.84) 5.075 (−4.33) 2.57× 10−2

41 1001 5.099 (−3.88) 5.074 (−4.36) 2.56× 10−2

81 1001 5.290 (−0.28) 5.277 (−0.53) 1.33× 10−2

161 1001 5.344 (0.73) 5.336 (0.59) 7.25× 10−3

81 2001 5.293 (−0.23) 5.281 (−0.46) 1.23× 10−2

161 4001 5.347 (0.79) 5.340 (0.67) 6.65× 10−3

Table 4: Comparison of x2 and x3 values at Re = 600 with percentage errors in
parentheses. The reference values for the separation and reattachment length at
the base of the domain are x2 =4.285 and x3 =8.120, half the reported values. ∗:
Mesh given in testing suite of hydra-th; †: Equivalent to Barton’s Mesh 7;

Ny Nx x2,ux=0 x3,ux=0 x2,ωz=0 x3,ωz=0

101† 201 4.407 (2.85) 8.045 (−0.93) 4.447 (3.77) 8.014 (−1.31)

101 1803 4.420 (3.14) 8.049 (−0.88) 4.454 (3.94) 8.022 (−1.21)

41∗ 801 4.352 (1.57) 7.920 (−2.46) 4.427 (3.31) 7.855 (−3.27)

41 1001 4.350 (1.52) 7.921 (−2.46) 4.425 (3.26) 7.856 (−3.26)

81 1001 4.419 (3.12) 8.031 (−1.10) 4.464 (4.18) 7.994 (−1.55)

161 1001 4.408 (2.87) 8.075 (−0.56) 4.435 (3.50) 8.054 (−0.81)

81 2001 4.422 (3.19) 8.030 (−1.11) 4.464 (4.18) 7.996 (−1.53)

161 4001 4.412 (2.97) 8.074 (−0.57) 4.437 (3.55) 8.055 (−0.80)

17

Table 5: Comparison of x1 values at Re =800 with percentage errors in parenthe-
ses. The reference value for the reattachment length at the base of the domain is
x1 =6.045, half the reported values. ∗: Mesh given in testing suite of hydra-th; †:
Equivalent to Barton’s Mesh 7;

Ny Nx x1,ux=0 x1,ωz=0 x1,ux=0 − x1,ωz=0

101† 201 6.018 (−0.44) 6.008 (−0.61) 1.02× 10−2

101 1803 6.012 (−0.55) 6.003 (−0.69) 8.72× 10−3

41∗ 801 5.713 (−5.50) 5.688 (−5.91) 2.50× 10−2

41 1001 5.702 (−5.68) 5.677 (−6.09) 2.50× 10−2

81 1001 5.977 (−1.13) 5.964 (−1.33) 1.23× 10−2

161 1001 6.060 (0.25) 6.054 (0.15) 6.51× 10−3

81 2001 5.988 (−0.94) 5.977 (−1.13) 1.13× 10−2

161 4001 6.063 (0.29) 6.057 (0.20) 5.95× 10−3

Table 6: Comparison of x2 and x3 values at Re = 800 with percentage errors in
parentheses. The reference values for the separation and reattachment length at
the base of the domain are x2 =4.770 and x3 =11.105, half the reported values. ∗:
Mesh given in testing suite of hydra-th; †: Equivalent to Barton’s Mesh 7;

Ny Nx x2,ux=0 x3,ux=0 x2,ωz=0 x3,ωz=0

101† 201 4.873 (2.16) 10.381 (−6.52) 4.911 (2.96) 10.346 (−6.83)

101 1803 4.868 (2.06) 10.391 (−6.43) 4.900 (2.73) 10.361 (−6.70)

41∗ 801 4.720 (−1.06) 10.146 (−8.63) 4.789 (0.41) 10.075 (−9.28)

41 1001 4.709 (−1.29) 10.148 (−8.62) 4.779 (0.18) 10.076 (−9.26)

81 1001 4.858 (1.84) 10.361 (−6.70) 4.901 (2.75) 10.320 (−7.07)

161 1001 4.878 (2.27) 10.428 (−6.10) 4.904 (2.81) 10.405 (−6.31)

81 2001 4.869 (2.07) 10.359 (−6.72) 4.909 (2.91) 10.321 (−7.06)

161 4001 4.881 (2.33) 10.428 (−6.10) 4.905 (2.82) 10.407 (−6.29)

18

	Introduction
	Models
	Results
	Re= 300
	Re= 600
	Re= 800
	Differences between the velocity and vorticity intersection points

	Conclusions
	Nomenclature
	User Velocity Condition
	Control Files
	Python Scripts
	Tables

