
C O M P U TAT I O N A L S C I E N C E S I N T E R N AT I O N A L

T H E H Y D R A T O O L K I T

R I G I D B O DY DY N A M I C S
T H E O R Y M A N U A L

C S I - 2 0 1 7 - 2 , D E C E M B E R 2 0 1 7

C O M P U TAT I O N A L S C I E N C E S I N T E R N AT I O N A L

Copyright © 2017 Computational Sciences International

published by computational sciences international

All rights reserved. No claim to copyright is made for original U.S. Government Works.

First printing, December 2017

DOI: 10.13140/RG.2.2.27725.54248

Contents

Contents 3

List of Figures 5

1 Introduction 9

2 Kinematics and the Equations of Motion 11
2.1 Linear and Angular Velocity 12

2.2 Forces and Moments . 14

2.3 Linear and Angular Momentum 14

2.4 Rigid-Body Equations of Motion 15

2.5 Kinetic Energy . 15

3 Quaternions and Robust Rotations 17
3.1 Quaternion Multiplication 18

3.2 Recovering a Rotation Tensor from a Quaternion 19

3.3 Equations of Motion Using Quaternions 19

4 Time Integration Methods 21
4.1 Runge-Kutta Methods . 21

4.2 Time-Integration Procedure 23

5 Mass Properties 25

6 Bibliography 27

7 Index 29

List of Figures

2.1 World and body coordinate systems. 12

2.2 Linear and angular velocity components used in the
computation of the velocity at a point. 13

2.3 Forces and moments on the rigid body. 14

2.4 General rigid body with total mass m, velocity v, linear
momentum P, and angular momentum L. 16

3.1 Body reorientation described by a rotation, θ, about an
axis defined by the unit vector λ. 18

5.1 Location of a differential volume used in the computa-
tion of the mass and center-of-mass coordinates. 25

the hydra toolkit rigid body dynamics theory manual csi-2017-2, december 2017 7

I can calculate the motion of heavenly bodies,

but not the madness of people.

Isaac Newton.

1 Introduction

The rigid-body dynamics theory manual outlines the formulation for
the six degree-of-freedom (DOF) rigid-body dynamics physics in the
Hydra Toolkit. The rigid-body dynamics solver is intended to be used
both as stand-alone solver, and optionally coupled to other physics
through the multiphysics manager.

The formulation follows the development presented by Barraff [1997a,b].
In this document, the following notation convention is used to describe
the rigid-body kinematics and solution methodology. All scalar quan-
tities are presented as lower-case symbols, e.g., the mass is m. Vectors,
second-rank tensors, and matrices are presented in bold and defined
in the context they are used.

The theory manual first presents an overview of kinematics for rigid
body dynamics in Chapter 2. The use of quaternions for rotations is
presented in Chapter 3, followed by the time-integration algorithms
in Chapter 4. Finally, the calculation of mass properties, i.e., the vol-
ume, mass, the body mass center, and inertia tensor calculations are
presented in Chapter 5.

2 Kinematics and the Equations of Motion

Rigid bodies occupy space and may undergo both translation and ro-
tation in a dynamic sense. In order to describe the translation of a
rigid body in an inertial reference frame, we will use the location of
the center-of-mass, xcm(t) at time t. In order to describe the rotation,
a rotation tensor, R(t), is used. Here, the components of the rotation
tensor are given as

R(t) =

 Rxx Ryx Rzx

Rxy Ryy Rzy

Rxz Ryz Rzz

 (2.1)

Together, xcm(t) and R(t) are the spatial variables required to describe
the position and orientation of a rigid body in our inertial reference
frame.

In order to describe the shape of the rigid body, it is convenient to
use a body-coordinate system that is attached to the center-of-mass.
The body coordinate system is fixed to the rigid body and rotates and
translates with the rigid body. The inertial and body coordinate sys-
tems are shown in Figure 2.1.

The initial location of the body is xcm(0) and the rotation tensor is
the identity, i.e., R = I. At time t, the rigid body has translated to
xcm(t) and experienced a finite rotation. The new body coordinates
may be described in terms of the rotation tensor as

x′ = R(t) x

y′ = R(t) y (2.2)

z′ = R(t) z

where

x =

1
0
0

 y =

0
1
0

 z =

0
0
1

 (2.3)

Performing the matrix operations in Eq. (2.2) will show that the columns
of the rotation tensor, R(t), represent the orientation of the body coor-
dinate axes at time t.

12 computational sciences international

Figure 2.1: World and body coordinate
systems.

The location of a point on the body, p may be calculated by rotat-
ing the point p(0) into the proper coordinate system at time t, and
translating the point with the rigid body center-of-mass, i.e.,

p(t) = R(t)p(0) + xcm(t) (2.4)

Linear and Angular Velocity

The velocity of the center-of-mass is

vcm =
dxcm

dt
(2.5)

For simplicity, we will refer to this as the linear velocity and drop the
“cm” subscript.

The angular velocity, ω, describes the rate at which the rigid body
spins about the center-of-mass. The direction of ω defines the axis
that the body is spinning about, and the magnitude, ‖ω‖, indicates
how fast the body is spinning.

The velocity of a given point on the rigid body is written in terms
of the velocity of the center-of-mass and the angular velocity as

vp(t) = ω× {p(t)− xcm(t)}+ v(t)

= ω× {R(t)p(0)}+ v(t) (2.6)

This relationship is shown graphically in Figure 2.2.
There is a linear relationship between the velocity and time-derivative

of the position vector, i.e., v = ẋcm. There is a similar relationship for

the hydra toolkit rigid body dynamics theory manual csi-2017-2, december 2017 13

Figure 2.2: Linear and angular velocity
components used in the computation of
the velocity at a point.

the rotation,
Ṙ(t) = ω(t)∗R(t) (2.7)

The ‘*’ notation indicates the following operation

ω(t)∗R(t) =

 ω(t)×

rxx

rxy

rxz

 ω(t)×

ryx

ryy

ryz

 ω(t)×

rzx

rzy

rzz

=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 Rxx Ryx Rzx

Rxy Ryy Rzy

Rxz Ryz Rzz

 (2.8)

Thus, ω(t)∗ is a skew-symmetric operator defined as

ω(t) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.9)

As an example, if a and b are vectors, then

a× b =

aybz − byaz

−axbz + bxaz

axby − bxay

 (2.10)

If we define the matrix a∗ to be

a∗ =

 0 −az ay

az 0 −ax

−ay ax 0

 (2.11)

14 computational sciences international

then

a∗b =

 0 −az ay

az 0 −ax

−ay ax 0

bx

by

bz

 = a× b (2.12)

Forces and Moments

The net force on a rigid body, f(t), is simply the sum of all the ex-
ternal forces applied. The applied moments or torque, T(t), may be
computed in terms of the applied forces at a given point p as

T(t) = {p(t)− xcm(t)} × f(t) (2.13)

which is shown in Figure 2.3.

Figure 2.3: Forces and moments on the
rigid body.

Linear and Angular Momentum

The linear momentum of a rigid body is given as

P(t) = mv(t) (2.14)

where m is the mass of the body and v(t) is the velocity of the body at
time t.

The conservation of linear momentum is given by

dP
dt

= m
dv
dt

= f(t) (2.15)

the hydra toolkit rigid body dynamics theory manual csi-2017-2, december 2017 15

where f represents the net external forces acting on the body.
Similarly, the angular momentum of a rigid body is defined as

L = Iω (2.16)

where I is the inertia tensor and ω is the angular velocity of the body.
Conservation of angular momentum may be written as

dL
dt

= T(t) (2.17)

where T represents the net external moments (or torque) acting on the
body.

Rigid-Body Equations of Motion

The state of a rigid body at any given time, t, is completely defined by
it’s position x(t), it’s orientation described by R(t), it’s linear momen-
tum P(t), and it’s angular momentum L(t). These quantities can be
written in terms of a state vector, Y, for the body as

Y =

x(t)
R(t)
P(t)
L(t)

 (2.18)

Thus, Y is a vector with eighteen components (three for position x,
nine for the rotation tensor R, three for the linear momentum P, and
three for the angular momentum L).

The motion of the rigid body is completely described by the evolu-
tion of this state vector over time. Thus, the rigid-body equations of
motion can be represented by a first-order system in time as follows,

d
dt

Y(t) =
d
dt

x(t)
R(t)
P(t)
L(t)

 =

v(t)

ω(t) ∗ R(t)
f(t)
T(t)

 . (2.19)

Equation (2.19) can be integrated term-by-term to obtain the state
of the rigid body at each time step. The time integration methods for
this are presented in Chapter 4.

Kinetic Energy

The kinetic energy for general rigid body is given by

Ek =
1
2

m‖v‖2 + ∑
1
2

mir2
i (2.20)

16 computational sciences international

where m is the total mass of the body, v is the velocity of the center-
of-mass, and ri is the magnitude of the position vector of an element
mi with respect to the center-of-mass. These quantities are illustrated
in Figure 2.4. The linear and angular momentum of the body are
included in the figure as well.

Figure 2.4: General rigid body with total
mass m, velocity v, linear momentum P,
and angular momentum L.

The kinetic energy can be re-written in terms of the linear and an-
gular momentum as follows,

Ek =
1
2

v · P +
1
2

ω · L (2.21)

Expanding the relation for angular momentum gives

L = (Ixxωx − Ixyωy − Ixzωz) i

+ (−Iyxωx + Iyyωy − Iyzωz) j (2.22)

+ (−Izxωx − Izyωy + Izzωz) k

where I is the moment of inertia tensor about the center-of-mass.
Combining Eq. (2.21) and (2.22), the kinetic energy for a three-

dimensional rigid body is

Ek =
1
2

mv2 +
1
2
(Ixxω2

x + Iyyω2
x + Izzω2

z) (2.23)

− (Ixyωxωy + Ixzωxωz + Iyzωyωz)

3 Quaternions and Robust Rotations

The 6-DOF formulation given by equation 2.19 involves a rotation ten-
sor to describe the orientation of the body. However, use of a rotation
tensor can present problems. Numerical errors will accumulate in the
terms of the rotation tensor as the equations of motion are integrated.
As this happens, the rotation tensor is loses its orthogonal properties.
This manifests itself as skewing in the body rotations. Another prob-
lem with rotation matrices is that they can suffer from gimbal lock.
That is, rotations in multiples of 90-degrees yield divide-by-zero er-
rors due to the cosine terms in the rotation tensor.

As an alternative, a unit quaternion can be used instead of a rotation
tensor. A unit quaternion is a four element vector normalized to unit
length. To gain a physical understanding of quaternions, consider how
a rotation tensor is formed. A rotation tensor is basically made up of
three successive rotations, one about each coordinate axis. The same
reorientation of a body can be accomplished by a single rotation, θ,
about a single axis through the body. The unit vector, λ, describes the
orientation of this axis. This is illustrated in Figure 3.1.

This type of description may be cast in terms of a quaternion which
is a four element vector represented as

q(t) = s(t) + vx(t)i + vy(t)j + vz(t)k (3.1)

Here s, vx, vy, and vz are commonly referred to as Euler parameters.
The quaternion can also be represented as the pair {s,v}.

The terms of the quaternion, s and v, are related to θ and λ as
follows

s = cos
θ

2

vx = λxsin
θ

2
(3.2)

vy = λysin
θ

2

vz = λzsin
θ

2

The terms of the quaternion are not independent and are related by

18 computational sciences international

Figure 3.1: Body reorientation described
by a rotation, θ, about an axis defined by
the unit vector λ.

the following equations

s2 + v2
x + v2

y + v2
z = 1

λx
2 + λx

2 + λx
2 = 1 (3.3)

As can be seen from Eq. (3.2), quaternions will not suffer from gim-
bal lock like a rotation tensor, because the terms will have finite value
for any rotation θ. In addition, the quaternion can be re-normalized to
unity every time-step preventing numerical errors from accumulating
and skewing the rigid body during rotation. The third advantage of
quaternions is that they require only four terms instead of the nine
values required for a rotation tensor. For these reasons, quaternions
will be used instead of rotation tensors in the equations of motions
presented here.

Quaternion Multiplication

To use quaternions, a formula for multiplication with a four element
vector must be established. This relation is

{s1, v1}{s2, v2} = {s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2} (3.4)

This equation can also be used to multiply a quaternion by a vector
simply by representing the vector as the pair {0,v}.

the hydra toolkit rigid body dynamics theory manual csi-2017-2, december 2017 19

Recovering a Rotation Tensor from a Quaternion

A rotation tensor can be derived from a quaternion at any time, t.
This is necessary to evolve the moment of inertia tensor, I, calculate
angular velocities, and calculate nodal positions. The relation between
the terms of a quaternion and a rotation tensor is

[R(t)] =

 1− 2v2
y − 2v2

z 2vxvy − 2svz 2vxvz + 2svy

2vxvy + 2svz 1− 2v2
x − 2v2

z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2
x − 2v2

y

 (3.5)

Equations of Motion Using Quaternions

The rotation tensor in the state vector, Y(t), can be replaced by a
quaternion, q(t). However, a relation for q̇(t) is required. This relation
is

q̇(t) =
1
2

ω(t)q(t). (3.6)

The state vector, Y(t), and the equations of motion can now be writ-
ten as

d
dt

Y(t) =
d
dt

x(t)
q(t)
P(t)
L(t)

 =

v(t)

1
2 ω(t)q(t)

f(t)
T(t)

 (3.7)

Equation (3.7) can be integrated term-by-term to obtain the state of
the rigid body at each time step. Integration routines for this process
are presented in Section §4.

4 Time Integration Methods

The rigid body dynamics solver is intended to be a light weight com-
putational component for coupled fluid-solid interaction problems.
This chapter presents the Runge-Kutta time integrators used in the
rigid body dynamics solver, and a summary of the solution procedure
and output processing steps.

The rigid body equations of motion are a first-order system of or-
dinary differential equations (ODEs). Using a quaternion to represent
the rotation degrees-of-freedom, the system may be written as

Ẏ(t) = F (Y, t) (4.1)

where the state vector Y is written in terms of the position x, quater-
nion (rotation) q, linear momentum P, and angular momentum L

Y(t) =

x(t)
q(t)
P(t)
L(t)

 (4.2)

and F (Y, t) is

F (Y, t) =

v(t)

1
2 ω(t)q(t)

f(t)
T(t)

 (4.3)

Runge-Kutta Methods

The first-order system of ODEs is integrated using either a second-
order or a fourth-order Runge-Kutta method. The second-order Runge-
Kutta algorithm proceeds as follows.

Algorithm 1 Second-Order Runge-Kutta (RK2)

1. Evaluate Ẏ at time tn

Ẏn = F (Yn, tn) (4.4)

22 computational sciences international

2. Update the intermediate state vector at tn+1/2

Y1 = Yn +
∆t
2
F (Yn, tn) (4.5)

3. Using Y1, evaluate Ẏ at tn+1/2

Ẏn+1/2 = F (Y1, tn+1/2) (4.6)

4. Update the final state vector at tn+1

Yn+1 = Yn + ∆tẎn+1/2 (4.7)

For problems that exhibit large rotations with each time-step, the
fourth-order time integrator has been found to provide significantly
more accurate results than the RK2 integrator. The fourth-order time
integration algorithm proceeds as follows.

Algorithm 2 Fourth-Order Runge-Kutta (RK4)

1. Evaluate Ẏ at time tn

Ẏn = F 1 = F (Yn, tn) (4.8)

2. Update the state vector at tn+1/2

Y1 = Yn +
∆t
2
F 1 (4.9)

3. Using Y1, evaluate Ẏ = F 2 at tn+1/2

F 2 = F (Y1, tn+1/2) (4.10)

4. Update the intermediate state vector at tn+1/2

Y2 = Yn +
∆t
2
F 2 (4.11)

5. Using Y2, evaluate Ẏ = F 3 at tn+1/2

F 3 = F (Y2, tn+1/2) (4.12)

6. Update the intermediate state vector at tn + 1

Y3 = Yn + ∆tF 3 (4.13)

7. Using Y3, evaluate Ẏ = F 4 at tn

F 4 = F (Y3, tn) (4.14)

8. Update the final state vector at tn+1

Yn+1 = Yn + ∆t
(

1
6
F 1 +

1
3
F 2 +

1
6
F 3 +

1
3
F 4

)
(4.15)

the hydra toolkit rigid body dynamics theory manual csi-2017-2, december 2017 23

Time-Integration Procedure

This section presents an overview of the initialization and algorith-
mic steps for the overall time-integration process. The initialization
includes several pre-processing steps required for the RK2/RK4 time-
integrators and for output processing.

Algorithm 3 Initialization

Precompute the mass m, center-of-mass xcm, inertia tensor Icm and I−1
cm

Setup the initial conditions for Y

x(0) = xcm(0)

q(0) = [1, 0, 0, 0]T

P(0) = mvcm(0) (4.16)

L(0) = I(0)ω(0)

Here, the quaternion initialization corresponds to setting the rotations to

R(0) =

 1 0 0
0 1 0
0 0 1

 (4.17)

During the time-integration process, the evaluation of F requires
the following steps

1. Velocity update using the linear momentum and t mass

vcm =
P
m

(4.18)

2. Normalize the quaternion

‖q‖ = 1 (4.19)

3. Recover the rotation tensor from the current quaternion

[R] =

 1− 2v2
y − 2v2

z 2vxvy − 2svz 2vxvz + 2svy

2vxvy + 2svz 1− 2v2
x − 2v2

z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2
x − 2v2

y

 (4.20)

4. Update the intertia tensors

Icm = R Icm RT

I−1
cm = R I−1

cm RT (4.21)

(4.22)

24 computational sciences international

5. Compute the angular velocity

ω = I−1
cm L (4.23)

6. Update the nodal position pi, displacements ui, and linear velocity
vi at node points for output processing

pi = xi − xcm 1 ≤ i ≤ Nnp (4.24)

where Nnp is the number of nodal points in the rigid-body mesh

ui = Rpi + (xcm(t)− xcm(0)) 1 ≤ i ≤ Nnp (4.25)

vi = ω× pi + vcm 1 ≤ i ≤ Nnp (4.26)

7. update the global kinetic energy

Ek =
1
2

mvcm · vcm +
1
2

Icmω ·ω (4.27)

5 Mass Properties

Mass or inertial properties for a rigid body are required for the rigid
body dynamics solver. Given a mass density ρ(x, y, z), the mass is
computed as

m =
∫

Ω
ρ(x, y, z) dΩ (5.1)

where Ω the volume occupied by the rigid body.
The center-of-mass coordinates are

xcm =
1
m

∫
Ω

ρ(x, y, z) x dΩ

ycm =
1
m

∫
Ω

ρ(x, y, z) y dΩ (5.2)

zcm =
1
m

∫
Ω

ρ(x, y, z) z dΩ (5.3)

Figure 5.1: Location of a differential
volume used in the computation of the
mass and center-of-mass coordinates.

26 computational sciences international

The inertia tensor is

I =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (5.4)

where

Ixx =
∫

Ω
ρ(x, y, z)[y2 + z2] dΩ

Iyy =
∫

Ω
ρ(x, y, z)[x2 + z2] dΩ

Izz =
∫

Ω
ρ(x, y, z)[x2 + y2] dΩ (5.5)

Ixy = Iyx = −
∫

Ω
ρ(x, y, z)xy dΩ

Ixz = Izx = −
∫

Ω
ρ(x, y, z)xz dΩ

Iyz = Izy = −
∫

Ω
ρ(x, y, z)yz dΩ

(5.6)

6 Bibliography

David Barraff. An introduction to physically based modeling: Rigid
body dynamics I - unconstrained rigid body dynamics. Technical
report, Carnegie Mellon University, Pittsburgh, PA, 1997a. 1997 Sig-
graph Course Notes.

David Barraff. An introduction to physically based modeling: Rigid
body dynamics II - nonpenetration constraints. Technical report,
Carnegie Mellon University, Pittsburgh, PA, 1997b. 1997 Siggraph
Course Notes.

7 Index

Copyright, 2

equations of motion, 11

Introduction, 9

kinematics, 11

mass properties, 25

quaternions, 17

time integration, 21

	Contents
	List of Figures
	Introduction
	Kinematics and the Equations of Motion
	Linear and Angular Velocity
	Forces and Moments
	Linear and Angular Momentum
	Rigid-Body Equations of Motion
	Kinetic Energy

	Quaternions and Robust Rotations
	Quaternion Multiplication
	Recovering a Rotation Tensor from a Quaternion
	Equations of Motion Using Quaternions

	Time Integration Methods
	Runge-Kutta Methods
	Time-Integration Procedure

	Mass Properties
	Bibliography
	Index

