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Abstract

This paper presents a hybrid two-layer wall treatment for RANS calculations
on unstructured grids that can be extended to multiple k − ε models without
the need to re-tune/re-calibrate model coefficients. The objective of the hybrid
wall treatment is to provide a generalized wall treatment that asymptotes to
a high-Reynolds number treatment when y+ > ∼ 30 while delivering a low-
Reynolds number behavior as the laminar sublayer is resolved y+ < ∼ 5. As
a basis for comparison, the so-called “scalable” wall functions, touted as being
y+-insensitive, are examined with the hybrid two-layer wall treatment in the
context of variable mesh resolution for a Reτ = 590 turbulent channel flow.
Two different mesh refinement strategies are used to test the sensitivity of each
formulation to the near-wall mesh resolution as the boundary layer is resolved.
Next, the behavior of the hybrid wall treatment is extended to turbulent flow
past a surface-mounted cube where there is massive separation, adverse pressure
gradients, and multiple three-dimensional recirculation points. The scalable wall
functions, while robust, are really still only viable for the high-Reynolds number
limit and do not converge to the correct physical boundary layer solution under
mesh refinement. In contrast, the hybrid wall treatment, although not perfect,
does provide the doubly-asymptotic behavior with both high-Reynolds number
behavior for coarse meshes, and the low-Reynolds number behavior when the
boundary layer is resolved. Application to the mounted cube problem has proven
the hybrid wall treatment to be incredibly robust even in the face of three-
dimensional flows with massive separation. The hybrid wall treatment, because
it is simple to implement, computationally efficient, and easily extensible to
k − ε variants without re-calibration, provides a a good alternative to low-Re
approaches.
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1. Introduction

Wall functions, sometimes referred to as “numerical graffiti” in the CFD
community, were introduced in the 1970’s as a mechanism to bridge the gap
between high-Reynolds number k − ε models and no-slip/no-penetration walls.
The high-Reynolds number (HRN) approach requires that the first mesh point
from a no-slip/no-penetration wall, where degrees-of-freedom are located, be
placed in the fully-turbulent region of the flow (y+ > ∼ 30). In contrast,
the use of low-Reynolds number (LRN) models require the first mesh point
to be placed in the laminar sublayer (y+ < ∼ 10). In complex geometry flows,
precisely controlling the mesh spacing to maintain the y+ requirements for either
the HRN or the LRN approach can prove problematic.

In contrast to the HRN and LRN methods, hybrid or compound wall treat-
ments are designed to be doubly asymptotic by delivering a wall-function be-
havior on coarse meshes (y+ > ∼ 30), a low-Reynolds number behavior for
y+ < ∼ 5, and reasonable results in the buffer region in between. Motivated by
recent work on compound wall treatments, e.g., [1, 2, 3], this work develops a
hybrid two-layer approach that is easily implemented and extensible to multiple
k− ε models without resorting to re-tuning/re-calibrating model coefficients. In
this work, the standard and RNG models are used as prototypical k− ε models.
As a basis for comparison, the Spalart-Allmaras (LRN) model and the so-called
“scalable” wall functions for the k − ε models are compared with the hybrid
two-layer wall treatment.

Before proceeding with the formulation, a brief review of work in the area
of wall treatment for RANS computations is presented. Bredberg [4] presents
a comprehensive study of wall functions and both LRN and HRN approaches.
Similarly, Albets-Chico, et al., [5] present a detailed analysis of wall function
approaches, while Durbin [6] reviews the use of limiters and various wall treat-
ments. As pointed out by Durbin [6]: “The holy grail is a grid-independent
formulation”.

The underpinnings for many of the HRN wall treatments used in CFD codes
today derive from the 1974 paper by Launder and Spalding [7]. This type of
wall modeling was designed for use with meshes where the first near-wall mesh
point is placed in the fully-turbulent logarithmic region of the boundary layer.
From a practical point of view, ensuring that all the near wall cells are outside
the viscous sublayer for complex flow geometries is problematic and will likely
not produce accurate wall shear and heat flux. In addition, the precise location
of the logarithmic region is solution dependent and may vary during the solution
process.

In contrast, low-Reynolds number models permit solving the k− ε equations
through the laminar sublayer. In 1984, Patel, et al. [8] provided an in-depth
analysis of eight competing low-Reynolds number k − ε closures and found all
to be lacking on physical grounds. Although used, the numerical stiffness asso-
ciated with the ε equation in the laminar sublayer has limited the widespread
adoption of the these LRN models in the CFD community. Goldberg, et al. [9]
made use of a realizable time-scale and a damping function for the turbulent
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eddy-viscosity in order to develop a k− ε model that could be integrated to the
wall using an asymptotic dissipation rate for the wall boundary condition. In
order to obtain a low-Reynolds number k− ε model, Rahman and Siikonen [10]
proposed a series of modifications to the standard k − ε model that include a
wall damping function for the eddy viscosity, a realizable time-scale, and vari-
able model coefficients Cε1 and Cε2 . For this work, attempting to extend the
approach of Rahman-Siikonen to the RNG k− ε model has proven problematic
because significant re-calibration of the model coefficients is required.

In 1988, Chen and Patel [11] introduced a two-layer model that integrates
the one-equation model (turbulent kinetic energy) of Wolfshtein [12] to the wall,
and represents the near-wall dissipation rate in terms of the turbulent kinetic
energy and a dissipation length scale. In the fully-turbulent region of the flow-
domain, the two-equation k − ε model is solved. Limited to structured meshes
and simple geometries, the Chen and Patel model used grid lines to segregate the
domain into a fully-turbulent region and near-wall region. In contrast, Grotjans
and Menter [13] formulated a y+-insensitive wall function that relies on a shift
in the velocity profile in the wall-normal direction. Initially implemented in the
CFX code, this resulted in the so-called “scalable” wall function approach found
in some commercial codes.

Craft, et al. [14, 15] report on the development of an analytic representation
of the dynamic variables necessary for a wall closure. The approach relies on a
proposed representation of the turbulent viscosity, molecular viscosity and tur-
bulent dissipation rate in wall-attached cells. This approach permits inclusion of
temperature dependent fluid properties, albeit with complex functions required
for the implementation. Shih, et al. [16] proposed a generalized approach to
wall functions using a piecewise polynomial representation of the variation of
velocity. In a similar vein, Utyuzhnikov [17] used analytical functions with a
linear model equation for the near-wall behavior in order to develop wall func-
tions. The work by Bazilevs, et al. [18] uses a modified weak boundary condition
with a stabilized finite element formulation that incorporate the law-of-the-wall
permitting relatively coarse boundary layer meshes to be used. Alternatively,
a novel approach to wall treatment based on enriching the polynomial function
space with the law-of-the-wall was used by Krank and Wall [19].

Knopp, et al. [20] consider the use of a hybrid wall treatment to permit
grid adaptation in the near-wall region while permitting application to non-
equilibrium flows. A compound wall treatment for the ζ − f model [21] was
developed by Popovac and Hanjalic [1] to relax the strict y+ requirements for
the LRN and HRN methodologies. Here, the blending functions of Kader [22]
were used for the velocity, and wall shear stress. Rahman and Siikonen [2] use
a similar approach, but with a highly-modified k− ε model that also relaxes y+

requirements. Saric, et al. [3] present a similar hybrid wall treatment with an
emphasis on achieving accurate wall heat transfer.

In the following sections, the formulation for the “scalable” wall function and
for a hybrid two-layer model are presented. The behavior of both approaches
under mesh refinement is explored in the context of a Reτ = 590 channel flow.
The k−ε models are then applied to the problem of three-dimensional flow past
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a mounted cube in order to demonstrate the behavior of the hybrid wall treat-
ment in a situation where there are multiple separation/reattachment points
and three-dimensional re-circulation zones.

2. Formulation

The Reynolds-averaged Navier-Stokes equations for an incompressible fluid
are defined in a domain Ω with boundary Γ = Γ1∪Γ2 in the time interval [0, T ].

∇ · v = 0 (1)

∂ρv

∂t
+∇ · (ρvv) = ∇ · (−pI + τ ) + ρf (2)

Here, ρ is the mass density, v = (vx, vy, vz)
T is the velocity, p is the fluid

pressure, τ is the deviatoric laminar and turbulent stress tensor, and f is the
body force per unit mass. A constitutive equation relates the deviatoric stress
and the strain rate, τ = 2(µ + µt)S, where S = 1

2 [∇v + (∇v)T ], µ is the
moelcular viscosity, and µt is the turbulent viscosity.

The momentum equations, Eq. (2), are subject to boundary conditions that
consist of prescribed velocity v(x, t) = v̂(x, t) on Γ1, or prescribed traction

T · n = f̂(x, t) on Γ2 where Γ = Γ1 ∪ Γ2 is the domain boundary with outward
normal n. A detailed discussion of boundary conditions for the incompressible
Navier-Stokes equations may be found in [23]. Velocity initial conditions are
prescribed as v(x, 0) = v0(x). For a mathematically well-posed incompressible
flow problem, the prescribed initial and boundary conditions on the velocity
field must satisfy

∇ · v0 = 0 (3)

n · v(x, 0) = n · vo(x) (4)

If Γ2 = 0, i.e., enclosure flows with n · v prescribed on all surfaces, then∫
Γ

n · v0dΓ = 0 (5)

must also be satisfied. The initial pressure is obtained by solving the pressure-
Poisson problem associated with initial velocity field (see Christon, et al. [24]
for details).

The k − ε transport equations are

∂ρk

∂t
+∇ · (ρvk) = ∇ ·

(
µ+

µt
σk
∇k
)

+ Pk −Dk (6)

∂ρε

∂t
+∇ · (ρvε) = ∇ ·

(
µ+

µt
σε
∇ε
)

+ Pε −Dε (7)

where k is the turbulent kinetic energy, and ε is the turbulent dissipation rate.
The production and dissipation terms are

Pk = 2µtS : S (8)
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Dk = ρε (9)

Pε = Cε1(2µtS : S)/Tt (10)

Dε = Cε2ρε/TT (11)

where the turbulent eddy viscosity is

µt = CµρkTt (12)

In the k − ε transport equations, the dynamic time-scale k/ε has been replaced
by the the realizable time-scale of Rahman and Siikonen [2]

Tt =
k

ε

√
1 +

C2
T

ReT
(13)

where ReT = ρk2/νε, and CT =
√

2. The coefficients for the “standard” and
RNG k − ε models are presented in Table 1

Standard k − ε [7] RNG k − ε [25]
Model Coefficient Value Model Coefficient Value

Cµ 0.09 Cµ 0.085
σk 1.0 σk 0.72
σε 1.3 σε 0.72
Cε1 1.44 Cε1 1.42
Cε2 1.92 Cε2 Eq.(14)

C̃ε2 1.68
β 0.012
η0 4.38

Table 1: Standard and RNG k − ε model coefficients.

where Cε2 for the RNG model is defined as

Cε2 = C̃ε2 +
Cµη

3(1− η/η0)

1 + βη3
(14)

and

η =
k

ε

√
2S : S (15)

The k − ε transport equations are subject to initial and boundary condi-
tions for k and ε respectively, and these are discussed in more detail in §2.1.
The Navier-Stokes equations are solved using a hybrid second-order projection
algorithm as described in [24]. The k − ε transport equations are solved using
a second-order spatial discretization with the positivity-preserving linearization
outlined in [26]. It is noted in passing that the hybrid projection algorithm used
here enjoys a relaxed convective stability condition that permits computations
with CFL > 10 to be performed for all transport equations.
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2.1. Implementation Considerations

The implementation of the two-equation models follows a somewhat typical
approach used in many CFD codes. For the turbulent kinetic energy, Eq. (6),
boundary conditions are typically of three types. At walls, a homogeneous
Neumann condition on the turbulent kinetic energy is applied

∂k

∂n
= 0 (16)

This is consistent with the fact that there can not be transport of turbulent
kinetic energy to the wall. Additionally, the production of turbulent kinetic
energy is computed based on the velocity profile.

For the turbulent dissipation rate, Eq. (7), the wall value is set explicitly
based on the specific wall treatment. A penalty technique, at the linear algebra
level, enforces the constraint of the dissipation rate in the discrete equations.

At inflow boundaries, a Dirichlet condition may be used if the inlet turbulent
kinetic energy and/or dissipation rate are known a priori. Otherwise, a homo-
geneous Neumann condition may be used which permits the incoming turbulent
kinetic energy and dissipation rate to adjust according to the flow conditions.
At outflow boundaries, a homogeneous Neumann condition is typically applied
for both k and ε.

The initial turbulent kinetic energy may be estimated from a known turbu-
lent intensity and velocity as

k(x, 0) =
3

2
(VrefI)2 (17)

where Vref is the reference (inlet or free stream) velocity, and I is the turbulent
intensity. The turbulent intensity is a measure of the RMS velocity fluctuations,
v′, relative to the reference velocity.

I =
v′

Vref
(18)

The turbulent intensity is often inferred from experimental data. The dissipation
rate may be estimated a number of ways, but the simplest is based on a viscosity
ratio

ε(x, 0) = ρCµ
k2(x, 0)

µR
(19)

where
R =

µt
µ

(20)

and typically 10 ≤ R ≤ 100.

2.2. Scalable Wall Functions

The scalable wall function approach is based on the work of Grotjans and
Menter [13] and limits the minimum value of the wall normal coordinate, that
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Figure 1: Schematic of the wall element where p is the centroid of the element, yv and yp
represent the normal distances from the wall to the edge of the viscous sublayer, the element
centroid respectively, and yn is the maximum of the normal distances of all the vertices.

in effect, shifts the velocity profile so that it appears to be at the the edge of
the viscous sublayer. This approach neglects the true fluid dynamics within the
viscous sublayer, but this is also the case for the standard wall function approach
where the formulation breaks down for mesh points within the viscous sublayer.
The effect of this shift is discussed further in §3.

To begin the discussion of the scalable wall-function formulation, a represen-
tative near-wall element is shown in Fig. 1 along with the various wall normal
distances. The non-dimensional wall element centroid distance, yp, is

y∗p =
C

1/4
µ ρ
√
kyp

µ
, (21)

where, k is the turbulent kinetic energy, ρ is the fluid density, and µ is the
molecular viscosity. It is important to note that y∗ is scaled with the velocity

scale, C
1/4
µ k1/2, to avoid singularities when the shear velocity tends to zero, and

is common practice in wall treatments.
The scalable wall function is based on the law of the wall

v+ = y+ +
1

κ
lnEy+ (22)

where E = exp (Bκ), B = 5.20 and κ = 0.41. The edge of the viscous sublayer,
yv, is computed using the intersection of the laminar and logarithmic velocity
profiles based on the law of the wall. The corresponding scaled viscous sublayer
distance is given by

y∗v =
C

1/4
µ ρ
√
kyv

µ
= 11.225 (23)

In order to ensure that the wall conditions are effectively at the edge of the
viscous sublayer, the following limiter is used

y∗plim = max
(
y∗p, y

∗
v

)
. (24)
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The value of yp is calculated as

yplim =
y∗plimµ

C
1/4
µ ρ
√
k

(25)

In order to estimate the production of turbulent kinetic energy in the wall-
attached element, the procedure outlined in Craft et al. [14] is adopted. The
production rate is assumed to be negligible in the viscous sublayer, y ≤ yv,
shown in Fig. 1. The production rate of k in the logarithmic layer and the
viscous sublayer are

Pk =


0 for y∗p < y∗v (Dissipation Layer)

τ2
wall

κC
1/4
µ ρk3/2y

for y∗p ≥ y∗v (Logarithmic Layer)
(26)

where,

τwall =
κC

1/4
µ ρ Vp

√
k

ln(Ey∗p)
. (27)

Here, Vp is the wall-tangent velocity evaluated at the cell centroid p as

Vp =‖ (v − vwall)−
[
(v − vwall) · n

]
n ‖ (28)

where n is the wall normal based on the cell face, and vwall is a relative wall
velocity.

Since Pk varies in the wall-normal direction as shown in Eq. (26), an av-
erage value of Pk denoted by Pk is used in the k-transport equation. In the
implementation, integration along the wall normal distance, y, is performed to
obtain Pk with the averaging limits for y taken to be 0 and yn (see, Fig. 1).
Here, yn is the maximum of the wall normal distances of all the vertices in a
given wall element. In the present formulation, yn ≈ 2yp.

The average production rate is

Pk =
1

yn

∫ yn

0

Pkdy

=
1

yn

∫ yv

0

Pkdy︸ ︷︷ ︸
Viscous sublayer

+
1

yn

∫ yn

yv

Pkdy︸ ︷︷ ︸
Logarithmic layer

(29)

Using Eq.(26) in Eq.(29), Pk is

Pk =
τ2
wall

κC
1/4
µ ρk1/2yn

ln
(yn
yv

)
(30)

where Pk is used in place of Pk in Eq.(7) for wall-attached elements at no-
slip/no-penetration boundaries.
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Similar to Pk, an average dissipation rate of k, Dk, is evaluated using the
variation of ε as suggested by Craft, et al. [14]. The assumed variation is shown
in Fig. 2 and is expressed as

ε =


2νk

y2
v

for y∗p ≤ y∗v

C
3/4
µ k3/2

κy
for y∗p > y∗v

(31)

where ν = µ/ρ. This implies that

Dk = ρε =


2µk

y2
v

for y∗p ≤ y∗v

ρ
C

3/4
µ k3/2

κy
for y∗p > y∗v

(32)

Figure 2: Schematic of the assumed ε variation in the wall elements.

Similar to Pk, the depth-averaged dissipation rate is

Dk =
1

yn

∫ yn

0

Dkdy

=
1

yn

∫ yd

0

Dkdy︸ ︷︷ ︸
Viscous sublayer

+
1

yn

∫ yn

yd

Dkdy︸ ︷︷ ︸
Turbulent log−layer

(33)

Using Eq. (32) and Eq. (33), the average dissipation rate is

Dk =
2µk

ynyd
+
ρC

3/4
µ k3/2

κyn
ln
(yn
yd

)
. (34)
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Figure 3: Schematic of the two-layer segregation of the flow domain into regions ΩA for the
fully-turbulent region, and ΩB for the near-wall region.

where
yd =

µκ

ρC
3/4
µ k1/2

(35)

The dissipation rate, Eq. (7), is specified in wall-attached elements using
the limited normal distance, yplim , as

ε =
C

3/4
µ k3/2

κyplim
(36)

Numerically, this is implemented using a penalty technique to enforce the cell-
centered value of the dissipation rate.

Finally, the viscosity at the no-slip/no-penetration wall is evaluated as

µwall =
ρC

1/4
µ k1/2κyp

ln
(
Ey∗plim

) (37)

2.3. Hybrid Two-Layer Treatment

The hybrid two-layer treatment is based, in part, on the work by Chen and
Patel [11]. The two-layer implementation requires that the cells in the flow
domain be segregated dynamically (on-the-fly) based on the local turbulent
Reynolds number as shown in Fig. 3. The turbulent Reynolds number is defined
as

Rey =
ρk1/2y

µ
(38)

The delineation between the near-wall and fully-turbulent regions is based on a
specified threshold Re∗y. Cells where Rey ≤ Re∗y are segregated into the near-
wall layer (ΩA), while all others are relegated to the fully-turbulent portion
(ΩB) of the domain.
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In the near-wall layer, the turbulent eddy viscosity is computed using the
turbulent Reynolds number

µtA = µReyC
3/4
µ κ

{
1− exp

(
−Rey
Aµ

)}
(39)

where Aµ = 70. The dissipation rate is computed from a dissipation length
scale

εA =
k3/2

lε
(40)

where

lε = Cly

{
1− exp

(
−Rey
Aε

)}
(41)

Aε = 2Cl, and Cl = κ/C
3/4
µ . Similar to the scalable wall function approach, the

values of εA are set using a penalty method at all elements that are identified
as being in the near-wall region ΩA.

In order to smoothly transition from the near-wall layer to the fully-turbulent
layer the blending function suggested by Jongen [27] is used for the turbulent
viscosity.

µt = λεµtB + (1− λε)µtA (42)

where

λε =
1

2

{
1 + tanh

(
Rey −Re∗y

A

)}
(43)

The constant, A, determines the width of the blending function, while Re∗y
determines the location of the blending function. Given Re∗y, A is computed by
requiring that λε = 0.99 when Rey −Re∗y = αRe∗y where 0.05 ≤ α ≤ 0.15.

Testing the location and width of the blending function has shown that, in
general, calculations are relatively insensitive to the value of α. However, the
choice of Re∗y is somewhat more important because a small value will result in
the blending occurring in the buffer or laminar sublayer of the the boundary
layer. In contrast, too large a value will place the blending function in the
fully-turbulent region. In general, the choice of Re∗y should place the blending
function as close to the wall as possible while preserving the laminar sublayer.
Figure 4 shows the variation of the blending function with respect to Re∗y and
α. After exhaustive testing on both equilibrium and non-equilibrium flows,
Re∗y = 75, α = 0.15 has been selected. As an aside, it should be noted that
Re∗y and α are model parameters and should not be viewed as user-defined
coefficients.

Turning attention to the remaining conditions for the velocity and wall tur-
bulent viscosity, there are several choices available for the construction of a wall
law with a buffer region. The wall profile of Kader [22] is

v+ = eΓy+ + e1/Γ ln (Ey+)

κ
(44)
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Figure 4: Jongen blending function for turbulent viscosity with varying α.

where

Γ =
0.01y+4

1 + 5y+
(45)

The second option considered here is due to Reichardt [28]

v+ =
1

κ
ln (1 + κy+) + 7.8

{
1− exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

)}
(46)

Figure 5 shows the linear, logarithmic, Kader and Reichardt velocity profiles.
The Kader profile exhibits clear defects and under-predicts the velocity in the
region 3 ≤ y+ ≤ 10. Despite this, testing has not shown a significant difference
between the two velocity profiles. However, for this work, the Reichardt profile
was chosen.

In order to make use of the non-dimensional Reichardt profile, the following
relationships (see Launder and Spalding [7]) are required.

y+ =
ρyv∗

µ
(47)

v+ =
ρvv∗

τwall
(48)

where the reference velocity, v∗, is

v∗ =

√
µVp
ρyp

+ C
1/2
µ kp (49)

and Vp is computed using Eq. (28).
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Figure 5: Linear, logarithmic, Kader and Reichardt velocity profiles.

Rearranging Eq. 48, the wall shear stress can be written in terms of Vp, yp
permitting the direct computation of the wall turbulent eddy viscosity

µw =
ρv∗yp
v+

(50)

where v+ is simply the Reichardt velocity profile (or alternatively the Kader
profile). Expanding the reference velocity yields

µw =
ρ
√

µVp
ρyp

+ C
1/2
µ kpyp

v+
(51)

Turning now to the production of turbulent kinetic in the near-wall cell, the
production may be written in terms of the non-dimensional velocity, the velocity
gradient, and the reference velocity as

Pk =
1

µ

(
ρv∗Vp
v+

){(
v∗v+

Vp

)
− ∂v+

∂y+

}
∂v+

∂y+
(52)

where for the Reichardt velocity,

∂v+

∂y+
=

1

1 + κy+
+ 7.8

{
1

11
exp

(
−y+

11

)
+

(
y+

33
− 1

11

)
exp

(
−y+

3

)}
(53)

Similar to the scalable wall function treatment, the dissipation of turbulent
kinetic energy is computed as an average using

Dk =
1

yn

∫ yn

0

ρC
3/4
µ k

3/2
p

κyp

{
1− exp

(
−ρk1/2p yp
µAε

)}dy (54)
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3. Results

In order to assess the scalable and hybrid two-layer wall treatments, a series
of calculations beginning with a Reτ = 590 channel flow are compared to the
DNS data of Moser, et al. [29]. In order to gauge the behavior of the scalable
and hybrid wall functions with both the STD and RNG k − ε models, the
one-equation Spalart-Allmaras model [30] is used on the same suite of grids.
Following the channel flow studies, the hybrid wall treatment is used with the
standard and RNG models to compute the flow past a mounted cube in order to
assess the behavior of the wall modeling approach in a situation with multiple
separation/reattachment points and three-dimensional re-circulation zones.

3.1. Reτ = 590 Channel Flow

The channel flow problem is non-dimensional and uses a computational do-
main that is is 20 × 1 units. Homogeneous Neumann boundary conditions for
v, k and ε are used at the inflow/outflow boundaries. The inflow pressure is
p = 0.557, and the outflow pressure is p = 0.0. No-slip/no-penetration velocity
boundary conditions are imposed at the top/bottom boundaries of the channel.
The initial conditions consist of is v(x, 0) = 0, k(x, 0) = 0.015, ε(x, 0) = 0.002.
This choice of boundary conditions permits the velocity, k and ε to evolve with-
out any significant entrance effects to the channel. The non-dimensional density
is ρ = 1, and the molecular viscosity is µ = 1.0e− 4. For the Spalart-Allmaras
model, the initial conditions are ν̃ = 3.1e−4, and again, homogeneous Neumann
inflow/outflow conditions are used.

In order to assess the behavior of the wall treatment, an initial study was
performed using uniform mesh spacing with a series of six levels of grid refine-
ment as shown in Table 2 for Mesh-A – Mesh-F. This mesh refinement strategy
was chosen to force the near wall mesh point to pass from the fully-turbulent
region through the buffer layer and into the laminar sublayer. Next a mesh
refinement study that initially placed the first mesh point in the laminar sub-
layer was used. Here, exponential grading in the wall-normal direction was used
while constraining a uniform refinement of the wall-attached cells as shown in
in Table 2 for Mesh-G – Mesh-J.

All computations using the Spalart-Allmaras model, and k − ε models with
the hybrid wall treatment were performed using a backward-Euler time-integrator,
with a fixed time-step ∆tmax = 0.2. In contrast, the use of the scalable wall func-
tions exhibited a reduced stability limit, and all computations were performed
using ∆tmax = 0.1. Each calculation was instrumented to collect time-history
velocity, pressure, and global kinetic energy ( 1

2

∫
Ω
ρv · v) data to determine the

presence of a steady-state solution.

Spalart-Allmaras

The global kinetic energy time-history data for Mesh-A – Mesh-J are shown
in Fig. 6. The global kinetic energy plots indicate that all computations ex-
hibited steady-state behavior by t = 500 time units, and the velocity/pressure
time-history data confirmed this behavior. For Mesh-A and Mesh-B, the y+
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Mesh (Nx, Ny) (∆x, ∆ymin) y+
min

Mesh-A (50, 11) (4.0e-2, 9.0909e-2) 53.636
Mesh-B (50, 21) (4.0e-2, 4.7619e-2) 28.095
Mesh-C (50, 41) (4.0e-2, 2.4390e-2) 14.390
Mesh-D (50, 81) (4.0e-2, 1.2346e-2) 7.2839
Mesh-E (50, 161) (4.0e-2, 6.2112e-3) 3.6646
Mesh-F (50, 321) (4.0e-2, 3.1153e-3) 1.8380

Mesh-G (50, 51) (4.0e-2, 5.0847e-3) 3.0000
Mesh-H (50, 101) (4.0e-2, 2.5424e-3) 1.5000
Mesh-I (50, 201) (4.0e-2, 1.2712e-3) 0.7500
Mesh-J (50, 401) (4.0e-2, 6.3556e-4) 0.3750

Table 2: Mesh resolution for the Reτ = 590 channel flow showing the cell count, and mesh
spacing in terms of the cell size and y+ at the no-slip/no-penetration walls.

associated with the first mesh point was insufficient, and the Spalart-Allmaras
(SA) model grossly over-predicted the velocity field. This is to be expected as
the model, as implemented, is strictly a low-Re model requiring y+ ≤ 10. As
indicated in Fig. 6(a), the behavior of the kinetic energy, and consequently the
velocity field, under mesh refinement is non-monotonic as the first mesh point
passes through the buffer layer and into the laminar sublayer, i.e., for Mesh-C
through Mesh-F. In contrast, convergence behavior when the first mesh point is
always in the laminar sublayer is monotonic as shown by the asymptotic kinetic
energy values in Fig. 6. This behavior is also shown in Fig. 12.

The velocity profiles for the mesh study are shown in Fig. 7 with the DNS
data of Moser, et al. [29]. Again, the non-monotonic behavior for the uniform
mesh refinement study is seen in Fig. 7(a) with Mesh-C over-predicting the ve-
locity profile, while Mesh-D – Mesh-E under-predict the velocity profile partic-
ularly for y+ ≥ 10. In contrast, a more monotonic behavior is seen in Fig. 7(b)
when there are multiple mesh points in the laminar sublayer. This overall be-
havior is not surprising given the low-Re nature of the Spalart-Allmaras model,
but it does give insight into the use of grids that are either under-resolving the
boundary layer, or in the case of complex geometries, where the near-wall mesh
resolution varies spatially and does not permit y+ ≤ 10 at all locations along
walls.

Scalable Wall-Function

Turning to the scalable wall functions, Fig. 8 shows the global kinetic energy
time history plots for the standard and RNG models. In contrast to the Spalart-
Allmaras results, the scalable wall function treatment appears to behave in
a more monotonic fashion under mesh refinement. Inspection of the velocity
profiles in Fig. 9 does indicate that under mesh refinement, the velocity profile
in the region y+ ≥ 10 does increase monotonically. However, the real problem
with this wall treatment is clear for y+ < 10 where the offset in the velocity
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(a) (b)

Figure 6: Global kinetic energy ( 1
2

∫
Ω
ρv ·v) for the Spalart-Allmaras model using (a) uniform

refinement on meshes A-F, and (b) refinement of y+ at the wall for meshes G-J.

(a) (b)

Figure 7: Velocity profile for the Spalart-Allmaras model using (a) uniform refinement on
meshes C-F, and (b) refinement of y+ at the wall for meshes G-J.
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(a) (b)

Figure 8: Global kinetic energy ( 1
2

∫
Ω
ρv · v) for (a) the standard k − ε model and (b) the

RNG model using the scalable wall functions with meshes A-F.

profile is observed. So, on the face of it, the scalable wall functions appear robust
in terms of the near-wall meshing, but the solution converges to a velocity profile
that is completely incorrect in the laminar sublayer due to the velocity shift.

For problems with complex geometry, where a high Reynolds number ap-
proach is warranted, and near-wall mesh points can not be strictly controlled
to guarantee y+ > 30, the scalable wall treatment may prove useful. However,
mesh refinement studies for verification may prove problematic in general, and
for problems where wall shear stress or heat transfer is important, this is not
a viable approach. Thus, the scalable wall functions are dropped from further
examination.

Hybrid Two-Layer Treatment

The global kinetic energy time-history plots for the standard (STD) and
RNG k − ε models using the hybrid two-layer wall treatment are shown in Fig.
10. The STD and RNG models both exhibit non-monotonic behavior in terms
of the global kinetic energy with respect to mesh refinement until there are mesh
points located in the buffer region or laminar sublayer (y+ <∼ 10). The RNG
model tends to result in somewhat more energetic velocity fields, with larger
maximal x-velocity at the channel centerline as shown in Fig. 10(c). This is
also seen in Fig. 11(c) where RNG over predicts the velocities for Mesh-A and
Mesh-B. The STD model tends to show less deviation from the DNS data for
Mesh-A – Mesh-F in comparison to the RNG results.

In contrast to the Spalart-Allmaras model, both the STD and RNG mod-
els deliver reasonable velocities for the coarse meshes, even on Mesh-A which
provides only 11 mesh points across the channel. The disparity between the
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(a) (b)

Figure 9: Velocity profile for (a) the standard k − ε model and (b) the RNG model using the
scalable wall functions with meshes A-F.

coarsest and finest meshes is more apparent with RNG. Again, using Mesh-G –
Mesh-J, the convergence becomes monotonic as the laminar sublayer is resolved
for both the RNG and STD models.

Turning to the convergence behavior, Fig. 12(a) shows the behavior of the
asymptotic global kinetic energy (at t = 500 time units) as a function of the y+ in
the wall-attached element. The Spalart-Allmaras model requires 10 ≤ y+ ≤ 15
before the velocity profile begins to approach the DNS data as shown in in Fig.
7(a). In contrast the k − ε models using either the scalable and hybrid wall
treatments deliver “reasonable” velocity profiles for relatively coarse meshes.
Although the scalable wall functions appear to behave in a convergent manner,
mesh points placed below the edge of the viscous sublayer do not provide any
real benefit in terms of accuracy.

The asymptotic kinetic energy plots in Fig. 12(b) show a near-quadratic
convergence in terms of y+. Richardson extrapolation was used to estimate the
order of convergence for the three models using meshes H – J as shown in Table
3. Although all three are nearly second-order in terms of the asymptotic global
kinetic energy metric, it is noted that the three are models, and the velocity
profiles can not be expected to be identical even on the finest mesh (see Fig.
7(b), 11(b) and (d)).

Model Convergence Rate

Spalart-Allmaras 1.84
Standard k − ε – Hybrid 2-Layer 1.78

RNG k − ε – Hybrid 2-Layer 1.70

Table 3: Convergence rate estimates using Meshes H–J.
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(a) (b)

(c) (d)

Figure 10: Global kinetic energy ( 1
2

∫
Ω
ρv · v) for k − ε model with the hybrid two-layer wall

treatment using (a) the standard model with uniform refinement on meshes A–F, (b) the
standard model with refinement of the y+ at the wall for meshes G–J, (c) the RNG model
with uniform refinement on meshes A–F, and (d) the model with refinement of the y+ at the
wall for meshes G–J.

19



(a) (b)

(c) (d)

Figure 11: Velocity profile for the standard and RNG k− ε models with the hybrid two-layer
wall treatment using (a) uniform refinement on meshes A-F, and (b) refinement of the y+ at
the wall for meshes G-J.
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(a) (b)

Figure 12: Asymptotic global kinetic energy ( 1
2

∫
Ω
ρv · v) for the Spalart-Allmaras, standard

and RNG k − ε models using (a) uniform refinement on meshes A-F, and (b) refinement of
the y+ at the wall for meshes G-J.

3.2. Mounted Cube

Next, attention is turned to flow past a surface mounted cube in turbulent
channel flow. The standard and RNG k − ε models using the hybrid two-
layer wall treatment are used, and the computed results compared to the the
experimental data by Meinders, et al. [31] and the DNS results by Yakhot, et
al. [32]. The geometry for the flow domain is adopted from [32] as shown in
Fig. 13. The Reynolds number is based on the cube height, h, and for the laser-
Doppler data reported by Meinders, et al., Reh = 4400. In contrast, Yahkot,
et al., performed their DNS at Rh = 1870. For this work, the k − ε models are
exercised at both Reynolds numbers.

The computational mesh contains 2.225 × 106 hex elements and is highly
graded to provide reasonable boundary layer resolution on the channel and
cube surfaces with 0.18 ≤ y+ ≤ 4.5. The inlet velocity profile is based on
the semi-empirical channel flow profile described by White [33] (pp. 458 –
463) as a traditional 1/7th power-law profile was not adequate. No-slip/no-
penetration conditions are prescribed at the top/bottom surfaces of the channel
and the mounted cube. At the inflow, homogeneous Neumann conditions are
used for k and ε, while p = 0 at the outflow. The velocity initial conditions are
obtained by computing an initial divergence-free velocity field that is consistent
with the boundary conditions. The initial pressure is obtained by solving the
pressure-Poisson problem associated with initial velocity field (see Christon, et
al. [24] for details). The initial turbulent kinetic energy was estimated to be
k(x, 0) = 1.35e− 3, while ε(x, 0) = 0.6195.

Initially a second-order trapezoidal time integrator was used to test the

21



Figure 13: Geometry for mounted cube mesh.

sensitivity of the flow for a variety of time-step sizes. All computations indicated
that the flow achieved a steady-state at approximately 200 time units. For
the remaining calculations, a backward-Euler time integrator was used with
∆tmax = 0.2 time units. Figure 14(a) shows the global kinetic energy time
history for the STD and RNG models for the Reh considered here. Time-history
data at points just downstream of the mounted cube, x = (6.5, 0.5,±0.5) and
x = (6.5, 0.75,±0.5), were used to assess the steady-state conditions as well.
Figure 14(b) shows the x-velocity time histories. All computations were carried
out to 500 time units to ensure a steady-state condition had been achieved.

The primary vortical structures may be identified by the particle traces
shown in Fig. 15(a). The region in front of the cube is associated with a horse-
shoe vortex that wraps around the cube, while the re-circulation zones on the
top, sides and downstream of the cube may be easily identified. The streak-
lines on the channel floor shown in Fig. 15(b) correlate well with the results in
Yakhot, et al. [32] and clearly indicate multiple separation and reattachment
points along with strong re-circulation zones downstream of the mounted cube.

In order to compare with the data of Meinders, et al. [31] and Yakhot, et
al. [32], high-resolution velocity data was collected along the x-axis at y/h =
0.1, 0.3, 0.5, 0.7, 0.9 as shown in Fig. 16. The Reh = 1870 results in Fig. 16(a–c)
match those of Yakhot quite well, although the strength of the re-circulation
zone in front of the mounted cube is under-predicted. This is identified by
the under-prediction of the minimum velocity for y/h = 0.1 for 4.5 ≤ x ≤ 5).
In contrast, the agreement with the separated region just behind the cube is
reasonable for both the Reh = 1870 and Reh = 4400 up to approximately
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(a) (b)

Figure 14: Time-history plots for the mounted cube: (a) global kinetic energy time-history
plot for the standard and RNG k − ε models, (b) velocity time-histories at (6.5, 0.5,±0.5).

x = 7.0. Beyond this point, the recovery in the x-velocity, downstream of the
cube, is under-predicted. It is noted in passing that the RNG model again
appears to produce slightly more “energetic” velocities.

The delayed recovery can be understood, in part, by examining the turbulent
eddy-viscosity downstream of the mounted cube. Figure 17 shows the ratio of
the turbulent eddy-viscosity to the molecular viscosity. The peak turbulent
eddy viscosity appears upstream of the mounted cube for the STD model as
shown in Fig. 17(a) and (c). In contrast, the RNG model appears to produce
a region of reduced eddy viscosity near the top of the cube which propagates
downstream. This explains, in part, the “energetic” behavior observed in the
velocities. However, for both the STD and RNG models, the eddy-viscosity
increases in the wake behind the mounted cube and is likely the culprit for the
delayed viscosity recovery.

4. Summary and Conclusions

This work has examined the behavior of the so-called “scalable” wall func-
tions and a new hybrid two-layer wall treatment in the context of variable mesh
resolution in order understand the behavior of the standard and RNG k−ε mod-
els as the near wall mesh point moves from the fully-turbulent region, through
the buffer zone, and into the laminar sublayer. Although the scalable wall func-
tions may be “robust” in terms of delivering results for any near-wall mesh
resolution, the approach is really still a high-Reynolds number method. Unfor-
tunately, using the scalable wall functions, the velocity profile for simple channel
flow does not even begin to resolve the laminar sublayer even when y+ < ∼ 10.
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(a)

(b)

Figure 15: Flow past the mounted cube at Reh = 1870 showing (a) particle traces colored by
velocity magnitude, and (b) streaklines on the bottom channel wall at y/h = 0.003.
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(a) (b)

(c) (d)

(e)

Figure 16: Streamwise velocity profiles for the standard k − ε models using the hybrid two-
layer wall treatment at (a) y/h = 0.1, (b) y/h = 0.3, (c) y/h = 0.5, (d) y/h = 0.7, and (e)
y/h = 0.9.
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(a)

(b)

(c)

(d)

Figure 17: Cut-plane at z/h = 0.0 showing νt/ν for (a) standard model with Reh = 1870,
(b) RNG model with Reh = 1870, (c) standard model with Reh = 4400, and (d) RNG model
with Reh = 4400.
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In contrast, the hybrid two-layer wall treatment delivers a convergent model,
albeit still a model, that can resolve into the laminar sublayer. Relative to
the low-Reynolds number Spalart-Allmaras model, the hybrid wall treatment
provides the desired doubly-asymptotic behavior for the standard and RNG
k − ε models. The sensitivity with respect to the placement of the near-wall
mesh points is slightly more pronounced for the RNG model than the standard
k − ε model, although both suffer from excessive dissipation downstream of
the mounted cube – a symptom of the underlying k − ε models. The hybrid
wall treatment, because it is simple to implement, computationally efficient,
and easily extensible to k− ε variants without re-calibration, provides a a good
alternative to low-Re approaches.
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