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When you come out of the storm, you won’t

be the same person who walked in. That’s

what this storm’s all about.

Haruki Murakami





Introduction

The computational fluid dynamics theory manual presents the theo-
retical background for the single and multiphase flow solvers. Both
solvers and multiphase flow solvers use a hybrid finite-volume/finite-
element spatial discretization using the Hydra toolkit. The theory
manual begins with the basic governing equations for incompressible
and low-Mach flow with an outline of the requisite constitutive rela-
tions. Attention is then turned to multicomponent flows before ad-
dressing the Arbitrary Lagrangian-Eulerian (ALE) formulation used
for fluid-solid interaction problems. Due to the flexibility in the vir-
tual abstract physics and transport interfaces, the Hydra Toolkit is very
extensible and can accommodate both multi-species and multi-phase
formulations. The turbulence models that are either already available
in the Hydra Toolkit or under development are outlined in Chapters
6, 11 and 12. An overview of the numerical methods used in the flow
solvers are discussed and followed by a presentation of the formula-
tion details for both the Eulerian and ALE reference frames. Finally,
the approach used for stable fluid-solid interaction computations that
is suitable for a broad range of fluid/solid densities and both linear
and non-linear deformations is presented.





Part I

Theoretical Development





1 Governing Equations

This chapter introduces the conservation equations that govern the
dynamics of fluids. The governing equations are presented first using
index notation and then using Gibb’s invariant (vector) notation in
order to simplify the subsequent development of topics where one
notation is preferred over the other. For example, turbulence models
are typically presented using index notation, while sections that deal
with numerical algorithms can favor vector notation.

Navier-Stokes Equations

The basic laws that describe fluid motion include the conservation of
mass, momentum, and energy. Figure 1.1 shows a prototypical control
volume containing a continuous fluid medium.

Γ
1

Γ
1

Γ1

Γ2
Outflow
Boundary

Figure 1.1: Control volume for conserva-
tion laws.

The conservation equations may be written using index notation as
follows [see Batchelor, 1967, Segel, 1965, Vincenti and Kruger, 1965].

Continuity equation

∂

∂t

∫
Ω

ρdΩ +
∮

Γ
ρvjnj dΓ = 0 (1.1)

Momentum equation

∂

∂t

∫
Ω

ρvidΩ +
∮

Γ
ρvivjnjdΓ =

∮
Γ
(−pδij + τij)njdΓ +

∫
Ω

fi dΩ (1.2)

Energy equation

∂

∂t

∫
Ω

ρEdΩ +
∮

Γ
ρEujnjdΓ =−

∮
Γ

qjnjdΓ

+
∮

Γ
ui(−pδij + τij)njdΓ

+
∫

Ω
q
′′′

dΩ +
∫

Ω
f jvjdΩ

(1.3)

Here, Ω is the arbitrary control volume shown in Fig. 1.1, Γ =

Γ2 ∪ Γ1 is the boundary of Ω where Γ2 and Γ1 indicate regions where
Neumann and Dirichlet boundary conditions are applied, and nj is the
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unit outward normal vector to the surface Γ. The remaining variables
are defined as follows: t is time, xi are the Cartesian coordinates, vi is
the fluid velocity, ρ is the fluid density, p is pressure, E = e + 1/2vivi

is the total energy per unit of mass, e is the internal energy per unit of
mass, τij is the viscous shear stress tensor, qi is the heat flux, fi is an
external force field, q

′′′
is the energy source, and δij is the Kronecker

delta. Vector and tensor quantities are understood to be Cartesian
where repeated indexes imply a summation, i.e, the Einstein conven-
tion.

Applying the divergence theorem, the differential form of the con-
servation equations may be derived [see Batchelor, 1967].

Continuity equation

∂ρ

∂t
+

∂

∂xj

(
ρvj

)
= 0 (1.4)

Momentum equation

∂ρvi
∂t

+
∂

∂xj

(
ρvivj

)
=

∂

∂xj

(
− pδij + τij

)
+ fi (1.5)

Energy equation

∂ρE
∂t

+
∂

∂xj

(
ρvjE

)
=

∂

∂xj

(
− qj + (−pδij + τij)vi

)
+ q

′′′
+ f jvj (1.6)

The energy equation (1.6) can be manipulated to express it in terms
of the internal energy (e). Using the momentum and continuity equa-
tions, Eq.(1.5) is multiplied by vi, and with the aid of Eq.(1.4), the
equation of mechanical energy may be written as

∂

∂t

(
ρvivi/2

)
+

∂

∂xj

(
ρvjvivi/2

)
= −vj

∂p
∂xj

+ vi
∂τij

∂xj
+ f jvj (1.7)

Subtracting Eq.(1.7) from Eq.(1.6), the energy equation written in
terms of internal specific energy is obtained.

∂ρe
∂t

+
∂

∂xj

(
ρvje

)
= −

∂qj

∂xj
− p

∂vj

∂xj
+ τij

∂vi
∂xj

+ q
′′′

(1.8)

Substituting the definition of enthalpy H = E + p/ρ and h = e +
p/ρ in Eqs.(1.6) and (1.8) allows the energy equation to be written in
terms of enthalpy.

∂

∂t
(ρH) +

∂

∂xj

(
ρvj H

)
=

∂p
∂t
−

∂qj

∂xj
+

∂

∂xj

(
τijvi

)
+ q

′′′
+ f jvj (1.9)

∂ρh
∂t

+
∂

∂xj

(
ρvjh

)
= −

∂qj

∂xj
+ τij

∂vi
∂xj

+
∂p
∂t

+ vj
∂p
∂xj

+ q
′′′

(1.10)
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Navier-Stokes Equations in Vector Form

This section presents the Navier-Stokes equation in vector form. The
reader may refer to 14 or Gresho and Sani [Gresho and Sani, 1998,
pp. 347 – 359] for an overview of notation used for the Navier-Stokes
equations.

The conservation equations can be written in a compact vector form
as

∂

∂t

∫
Ω

UdΩ +
∮

Γ
F · dΓ =

∫
Ω

QdΩ (1.11)

where the vector of conserved variables is defined as

U =


ρ

ρv
ρE

 =



ρ

ρvx

ρvy

ρvz

ρE


(1.12)

The total flux F is divided into Euler (FE) and viscous fluxes (FV)

F = FE − FV (1.13)

where

FE =


ρv

ρvv + Ip
ρv(E + p/ρ)

 = vU +


0
I
v

 p (1.14)

I is the identity tensor, and

FV =


0
τ

τ · v− q

 (1.15)

The source vector is defined as

Q =


0
f

q
′′′
+ f · v

 (1.16)

Here, v is the fluid velocity, ρ is the fluid density, p is pressure, E =

e + 1/2v · v is the total energy per unit of mass, e is the internal energy
per unit of mass, τ is the viscous shear stress tensor, q is the heat flux, f
represents applied forces, q

′′′
is the energy source. Alternatively, these

equations can be written in flux-divergence form

∂U
∂t

+∇ · F = Q (1.17)

where the divergence operator is applied to each row of the flux vector

∂

∂t


ρ

ρv
ρE

+


∇ · (ρv)

∇ ·
(
ρvv + Ip− τ

)
∇ ·

(
ρv(E + p/ρ)− τ · v + q

)
 = Q. (1.18)
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Boundary Conditions

In order to obtain solutions to the governing equations appropriate
boundary and initial conditions are required. The type of boundary
conditions to be specified depends on the characteristics of the prob-
lem under consideration. The most common boundary conditions are
described below in reference to Fig. 1.2.

Figure 1.2: Schematic of boundary sur-
faces.

1. No-slip/no-penetration condition (Γwall): This condition is com-
monly referred to as the “no-slip” condition. The adherence of fluid
molecules to a surface requires that the fluid velocity at the surface
be equal to the surface velocity, i.e., vi = v̂i, where vi is the velocity
of the fluid and v̂i is the prescribed surface velocity. In the particu-
lar case when the surface is at rest the no slip condition reduces to
the familiar vi = 0 boundary condition.

2. Slip condition (Γslip): A slip condition assumes that the fluid does
not adhere to the surface. However, it typically also assumes that
the fluid can not penetrate the surface, i.e., vini = v̂ini, where ni is
the unit outward normal to the surface.

3. Infiltration condition (Γwall): Surfaces that allow infiltration are per-
meable and permit a wall-normal velocity to cross the surface vn =

v̂n. In order to apply an infiltration boundary condition the in-
filtration velocity (v̂n) needs to be different from the wall-normal
velocity.

4. Temperature condition (Γwall): This boundary condition prescribes
the fluid temperature at the surface T = T̂, where T̂ is the wall
temperature.

5. Heat flux condition (Γwall): This condition is defined on surfaces
where a heat flux is prescribed. An adiabatic condition may also be
specified when there is no heat flux from the fluid to the surface,
i.e., qn = 0. If the heat flux is defined using Fourier’s Law this
boundary condition is expressed as the normal gradient to the wall
of temperature equal to zero, i.e., ∂T/∂n = 0.

6. Inflow condition (Γin f low): Inflow surfaces are those where the fluid
enters the domain and where the values of flow variables are pre-
scribed. Typically, these are simple Dirichlet boundary conditions.

7. Outflow condition (Γout f low): Outflow surfaces are those surfaces
where the flow leaves the domain. In the Hydra Toolkit, the de-
fault outflow condition is implemented by applying a homogeneous
Neumann condition, i.e., the normal gradient of the variables is zero
at the surface ∂φ/∂n = 0, where φ is an arbitrary variable, e.g.,
φ = v, T, h, etc . . .
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Initial Conditions

In addition to boundary conditions, the Navier-Stokes equations re-
quire that initial conditions for all variables be defined. Although the
initial conditions can be selected arbitrarily, incompressible flows re-
quire that these conditions be compatible with the boundary condi-
tions in order to define a a well-posed problem.

Constitutive Relations

The Navier-Stokes equations, in either integral (1.1)-(1.3) or differential
(1.4)-(1.6) form, are statements of conservation of mass, momentum,
and energy. These equations, in particular momentum and energy, re-
quire the stress tensor and heat flux vector to be expressed as functions
of the flow variables in order to have a complete system of equations
to solve. It is well-known that the molecular structure of the fluid de-
termines the way the stress tensor and heat flux are defined [White,
1991, Vincenti and Kruger, 1965], e.g., stresses in air and water follow
different functional forms than those followed by more complex flu-
ids like blood plasma, latex, molasses, mercury, or glass, precluding a
universal model that could be used in all fluids.

Newtonian Fluids

Although there is no single general functional form for the shear stress
tensor, in general, the shear stress depends on the strain rate (Sij),
temperature (T), pressure (p), and time (t) [White, 1991, Vincenti and
Kruger, 1965]

τij = f (Sij, T, p, t) (1.19)

where the strain rate is

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(1.20)

Newtonian fluids exhibit a linear relationship between shear stress
and strain rate expressed as

τij = 2µ

(
Sij −

1
3

Skkδij

)
(1.21)

where µ is the fluid viscosity.
Kinetic theory for gases has been used to formally derive equation

(1.21) for low density gases [Chapman and Cowling, 1952, Vincenti
and Kruger, 1965], however, experimental evidence indicates that this
relation is equally valid for liquids [White, 1991].
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In many Engineering applications, fluid viscosity depends only on
temperature and pressure. Experimental data indicates that there is
no universal function that can parameterize the dependency of vis-
cosity on temperature and pressure for all fluids. However, there is
enough experimental evidence to state that the viscosity of liquids
decrease rapidly with rising temperature, while the viscosity of low-
density gases always increase with rising temperature. Additionally,
the viscosity always increases with pressure.

Sutherland proposed an equation based on kinetic theory valid for
diatomic atoms in a substance composed of a single element

µ

µ0
=

(
T
T0

)3/2 T0 + S
T + S

(1.22)

where, S is a constant known as Sutherland constant, and T0 and µ0 are
reference temperature and viscosity, respectively. The value of these
constants depend on the specific fluid. Another simple approximation
is the power law that can be used also for liquids

µ

µ0
=

(
T
T0

)n

(1.23)

where n, µ0, and T0 depend on the fluid.

Non-Newtonian Fluids

Depending on the molecular structure of the fluid it is possible to
find cases where the shear stress – strain rate relationship is not lin-
ear. In general, fluids that do not follow Eq.(1.21) are known as non-
Newtonian, and their behavior can be quite complex. For instance, the
shear stress at constant strain rate for some substances may increase
(rheopectic fluid) or decrease (thixotropic fluid) with time. Addition-
ally, some fluids can support finite stresses without experiencing any
deformation. These fluids are known as “yielding” fluids and are part
solid and part fluid.

Many models have been proposed to approximate non-Newtonian
fluids, the most typical approach prescribes a functional relationship
between viscosity, strain-rate and temperature

τij = 2µ(T, Sij)Sij (1.24)

The following models are representative of this class of non-Newtonian
constitutive relationship.

Carreau-Yasuda model

The Carreau-Yasuda model defines the viscosity as

µ = µ∞ + (µ0 − µ∞)(1 + (λS a)
n−1

a (1.25)
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where µ0 is the low shear-rate Newtonian viscosity, µ∞ is the infinite
viscosity (at high strain rates), λ is the “natural” time constant of the
fluid, i.e., 1/λ is the critical shear rate at which the fluid changes from
Newtonian to power law behavior, and n is the flow behavior index in
the power law regime. The coefficient a is a material parameter. In the
original Carreau model a = 2.

Cross model

When it is necessary to describe low-shear rate behavior, the Cross
model is useful. This model is defined as

µ = µ∞ +
µ0 − µ∞

1 + (λS)1−n (1.26)

where µ0 is the Newtonian viscosity, µ∞ is the infinite shear viscosity
(usually assumed to be zero for the Cross model), λ is the natural time
constant of the fluid (1/λ is the critical shear rate at which the fluid
changes from Newtonian to power law behavior), and n is the flow
behavior index in the power law regime.

Ellis-Meter model

The Ellis-Meter model expresses the viscosity in terms of the effective
shear stress S

µ = µ∞ +
µ0 − µ∞

1 + (S/S1/2)(1−n)/n
(1.27)

where S1/2 is the effective shear stress at which the viscosity is 50%
between the Newtonian limit, µ0, and the infinite shear viscosity, µ∞,
and n represents the flow index in the power law regime.

Herschel-Bulkey model

The Herschel-Bulkey model can be used to describe the behavior of
viscoplastic fluids, such as Bingham plastics, that exhibit a yield re-
sponse. The viscosity is expressed as

µ =

{
µ0 if τ < τ0

1
S (τ0 + k(Sn − (τ0/µ0)

n)) if τ ≥ τ0
(1.28)

Here, τ0 is the “yield” stress and µ0 is a penalty viscosity to model
the “rigid-like” behavior in the very low strain rate regime (S ≤
τ0/µ0), when the stress is below the yield stress, τ ≤ τ0. With in-
creasing strain rates, the viscosity transitions into a power law model
once the yield threshold is reached, τ ≥ τ0. The parameters k and n
are the flow consistency and the flow behavior indexes in the power
law regime, respectively. Bingham plastics correspond to n = 1.
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Powell-Eyring model

The Powell-Eyring model, which is derived from the theory of rate
processes, is relevant primarily to molecular fluids but can be used in
some cases to describe the viscous behavior of polymer solutions and
viscoelastic suspensions over a wide range of shear rates. The viscosity
is expressed as

µ = µ∞ + (µ0 − µ∞)
sinh−1(λS)

λS (1.29)

where µ0 is the Newtonian viscosity, µ∞ is the infinite shear viscosity,
and λ represents a characteristic time of the measured system.

Power Law Model

The power law model defines the viscosity as

µ = kSn−1; µmin ≤ µ ≤ µmax (1.30)

with

S =

√
1
2

SijSij (1.31)

where, k is a consistency coefficient and n is the flow behavior index.
When n < 1 the fluid is shear-thinning (or pseudoplastic), i.e., the
apparent viscosity decreases with the strain rate. For n > 1, the fluid
is shear-thickening, i.e., the apparent viscosity increases with the strain
rate. Newtonian behavior is recovered for n = 1.

Heat Transfer

Classical thermodynamics indicates that the heat flux vector is a func-
tion of the temperature gradient as expressed by Fourier’s law

qi = −κ
∂T
∂xi

(1.32)

where κ is the coefficient of thermal conductivity. This law has been
verified by kinetic theory in one of its most celebrated results [Vincenti
and Kruger, 1965]. Similar to the fluid viscosity, the thermal conduc-
tivity is a function of temperature and pressure. Note that, contrary to
what happens in solids where anisotropic behavior may be observed,
in fluids the conductivity is typically represented as a scalar due to the
inherent isotropy of fluids.

Analytic relations have been proposed by kinetic theory for the ther-
mal conductivity by Sutherland

κ

κ0
=

(
T
T0

)3/2 T0 + S
T + S

(1.33)
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Similar to viscosity, a power law can be used to calculate the thermal
conductivity for both gases and liquids

κ

κ0
=

(
T
T0

)n

(1.34)

Another approach that is frequently used to compute the coefficient
of thermal conductivity relies on the use of the Prandtl number

Pr =
µCp

κ
(1.35)

If the viscosity coefficient, the Prandtl number, and the heat capacity at
constant pressure (Cp) are known, it is possible to obtain the thermal
conductivity coefficient.

Equation of State

Thermodynamics provides the final set of relations required to com-
plete the Navier-Stokes equations. The first law of thermodynamics
can be stated in the following form

dE = dQ + dW (1.36)

where dE is the change in total energy of the system, dQ is the heat
added to the system, and dW is the work done on the system. The
heat and work can be defined in terms of thermodynamic variables as

dW = −pdV (1.37)

dQ = TdS (1.38)

where V is the volume, and S is the entropy. Using these definition
and expressing the results in terms of a unit mass basis the first law of
thermodynamics can be written as

de = Tds +
p
ρ2 dρ (1.39)

This implies
e = e(s, ρ) (1.40)

so that only one relationship is required to the define the thermody-
namic state of the substance.

Using the fact that

de =
∂e
∂s

ds +
∂e
∂ρ

dρ (1.41)

and by comparing Eq.(1.39) and Eq.(1.41), the following relation can
be obtained

T =
∂e
∂s

∣∣∣
ρ

p = ρ2 ∂e
∂ρ

∣∣∣
s

(1.42)
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The enthalpy can be defined as

h = e +
p
ρ

(1.43)

which can be used to rewrite the first law in the following way

dh = Tds +
1
ρ

dp (1.44)

which similarly defines an equation of state of the following form

h = h(s, p) (1.45)

from which the other properties can be calculated

T =
∂h
∂s

∣∣∣
p

,
1
ρ
=

∂h
∂p

∣∣∣
s

(1.46)

The specific heats are important thermodynamic properties, and
they are defined as

Specific heat at constant pressure

Cp =
∂h
∂T

∣∣∣
p

(1.47)

Specific heat at constant volume

Cv =
∂e
∂T

∣∣∣
v

(1.48)

The ratio of the specific heats is another important thermodynamic
relation and is defined as

γ =
Cp

Cv
(1.49)

When the internal energy and enthalpy depend only on tempera-
ture (known as calorically perfect) they can be computed as

h = CpT (1.50)

e = CvT. (1.51)

relative to a zero temperature reference state.

Ideal Gas

For ideal gases, kinetic theory has shown that the pressure can be
computed from a simple equation of state

p = (γ− 1)ρe. (1.52)



2 Low-Mach Flows

In this chapter, the development of the low-Mach acoustically-filtered
Navier-Stokes equations is presented. These equations are applicable
to flow problems where large density variations are of interest and
the energy contained in acoustic waves is negligible relative to the
advective waves.

Low-Mach Equations

The level of compressibility of a flow is usually measured based on
its Mach number Ma, which is defined as the ratio between the flow
velocity (v) and the speed of sound of the fluid.

Ma =
v
c

(2.1)

In the low-Mach number regime, where Ma → 0, both the continuity
(1.4) and momentum (1.5) equations are still valid, however, the energy
equation (1.10) can be simplified based on dimensional analysis. The
following non-dimensional variables are used in the ensuing analysis

t =
L
v0

t∗ (2.2)

h = CpT0h∗ (2.3)

vi = v0v∗i (2.4)

qi =
κT0

L
q∗i (2.5)

τij =
µv0

L
τ∗ij (2.6)

p = ρ0v2
0 p∗ (2.7)
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ρ = ρ0ρ∗ (2.8)

where v0, T0, and ρo are the reference velocity, temperature and density
respectively. Then, by substituting the previous definitions in Eq.(1.10),
the energy equation can be written as

ρ0CpT0v0

L

(
∂ρ∗h∗

∂t∗
+

∂

∂x∗j

(
ρ∗v∗j h∗

))
=− κT0

L2

∂q∗j
∂x∗j

+
µv2

0
L2 τ∗ij

∂v∗i
∂x∗j

+
ρ0v3

0
L

(
∂p∗

∂t∗
+ v∗j

∂p∗

∂x∗j

)
+ q

′′′

(2.9)

Rearranging terms,

∂ρ∗h∗

∂t∗
+

∂

∂x∗j

(
ρ∗v∗j h∗

)
=− 1

PrRe

∂q∗j
∂x∗j

+
Ma2(γ− 1)

Re
τ∗ij

∂v∗i
∂x∗j

+ Ma2(γ− 1)
(

∂p∗

∂t∗
+ v∗j

∂p∗

∂x∗j

)
+

L
ρ0CpT0v0

q
′′′

(2.10)

where Pr = Cpµ/κ is the Prandtl number and Re = ρvL/µ is the
Reynolds number. Therefore, for low-Mach number flows Ma → 0

the viscous dissipation and the material derivative of pressure (
∂p
∂t

+

vj
∂p
∂xj

) can be neglected compared to the heat conduction, advection,

and rate terms. The source terms may or may not be neglected de-
pending on their definition. Consequently, the energy equation used
in low-Mach number flows is

∂ρh
∂t

+
∂

∂xj

(
ρvjh

)
= −

∂qj

∂xj
+ q

′′′
(2.11)

In terms of temperature for a calorically perfect fluid [White, 1991],
the energy equation is

∂ρCpT
∂t

+
∂

∂xj

(
ρvjCpT

)
= −

∂qj

∂xj
+ q

′′′
(2.12)



3 Incompressible Flows

This chapter presents the incompressible Navier-Stokes equations in
stress-divergence form along with a complete description of initial and
boundary conditions. The conservation equations are presented first in
indicial notation, and followed by a presentation using vector notation
in §3.2.

Conservation Equations – Indicial Form

In the ensuing discussion, the incompressible Navier-Stokes equations
with concomitant initial and boundary conditions are presented in in-
dicial notation. The reader may refer to Gresho and Sani [Gresho and
Sani, 1998, pp. 357 – 359] for an overview of notation for the Navier-
Stokes equations.

Mass Conservation

The mass conservation principle in divergence form is

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0. (3.1)

In the incompressible limit, the velocity field is solenoidal,

∂vi
∂xi

= 0 (3.2)

which implies a mass density transport equation,

∂ρ

∂t
+ vj

∂ρ

∂xj
= 0. (3.3)

This form of the mass density transport is useful in multi-fluid volume-
tracking applications with a solenoidal velocity condition[The Truchas
Team, 2003].

For pure incompressible single-fluid flows, the density remains con-
stant both in time and space and Eq. (3.3) is neglected with Eq. (3.2)
remaining as a constraint on the velocity field.
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Momentum Conservation

The conservation of linear momentum is

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂σij

∂xj
+ ρ fi (3.4)

where vi is the velocity, σij is the stress tensor, ρ is the mass density,
and fi is the body force. The body force contribution ρ fi typically
accounts for buoyancy forces with fi representing the acceleration due
to gravity.

The stress may be written in terms of the fluid pressure and the
deviatoric stress tensor as

σij = −pδij + τij (3.5)

where p is the pressure, δij is the Kronecker delta, and τij is the devia-
toric stress tensor. A constitutive equation relates the deviatoric stress
and the strain rate, e.g.,

τij = 2µSij. (3.6)

The strain-rate tensor is written in terms of the velocity gradients as

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
. (3.7)

Energy Conservation

An analysis of the implication of incompressibility on the energy equa-
tion follows the same dimensional analysis performed in the low-Mach
formulation discussed in Chapter 2 with the exception that Ma = 0.
Therefore, the viscous dissipation and the material derivative of the
pressure are neglected. Consequently equation (2.12) is used also in
the development of the incompressible equations and repeated here
completeness.

The energy equation may be expressed in terms of temperature, T,
as

∂ρCpT
∂t

+
∂

∂xj

(
ρvjCpT

)
= −

∂qj

∂xj
+ q

′′′
(3.8)

where Cp is the specific heat at constant pressure, qi is the diffusional
heat flux rate, and q

′′′
represents volumetric heat sources and sinks,

e.g., due to exothermic/endothermic chemical reactions. Fourier’s law
relates the heat flux rate to the temperature gradient and thermal con-
ductivity

qi = −κ
∂T
∂xi

(3.9)

where κij is the thermal conductivity.
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Boundary and Initial Conditions

The prescription of boundary conditions is based on a flow domain
with boundaries that are either physical or implied for the purposes
of performing a simulation. A simple flow domain is shown in Figure
3.1 where the boundary of the domain is Γ = Γ1 ∪ Γ2.

Γ
1

Γ
1

Γ1

Γ2
Outflow
Boundary

Figure 3.1: Flow domain for conserva-
tion equations.

The momentum equations, Eq. (3.4), are subject to boundary condi-
tions that consist of specified velocity on Γ1 as in Eq. (3.10) or traction
boundary conditions on Γ2 as in Eq. (3.12).

vi(xi, t) = v̂i(xi, t) on Γ1 (3.10)

In the case of a no-slip and no-penetration boundary, vi = 0 is the pre-
scribed velocity boundary condition. The prescribed traction bound-
ary conditions are

σijnj = f̂i(xi, t) on Γ2 (3.11)

where nj is the outward normal for the domain boundary, and f̂i are
the components of the prescribed traction. In terms of the pressure
and strain-rate, the traction boundary conditions are{

−pδij + 2µSij
}

nj = f̂i(xi, t) on Γ2. (3.12)

The traction and velocity boundary conditions can be mixed. In a
two-dimensional sense, mixed boundary conditions can consist of a
prescribed normal traction and a tangential velocity. For example, at
the outflow boundary in Figure 3.1, a homogeneous normal traction
and vertical velocity on Γ2 constitute a valid set of mixed boundary
conditions. A detailed discussion of boundary conditions for the in-
compressible Navier-Stokes equations may be found in Gresho and
Sani [Gresho and Sani, 1998].

The boundary conditions for the energy equation, Eq. (3.8), consist
of a prescribed temperature or heat flux rate. The prescribed tempera-
ture is

T(xi, t) = T̂(xi, t) (3.13)

and the prescribed heat flux rate is

−κij
∂T
∂xj

ni = q̂(xi, t) (3.14)

where q̂ is the known flux rate through the boundary with normal ni.
The heat flux rate may also be prescribed in terms of a heat transfer
coefficient,

−κij
∂T
∂xj

ni = h(T − T∞) (3.15)

where h is the heat transfer coefficient and T∞ is a reference tempera-
ture.
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Initial conditions take on the form of prescribed velocity, species,
and temperature distributions at t = 0, i.e.,

vi(xi, 0) = v0
i (xi)

T(xi, 0) = T0(xi). (3.16)

Remark

For a well-posed incompressible flow problem, the prescribed initial
velocity field in Eq.(3.16) must satisfy Eq.(3.17)-(3.18) (see Gresho and
Sani[Gresho and Sani, 1987]). If Γ2 = 0 (the null set, i.e., enclosure flows
with nivi prescribed on all surfaces), then global mass conservation en-
ters as an additional solvability constraint, as shown in Eq.(3.19).

∂vi
∂xi

= 0 (3.17)

nivi(xi, 0) = niv0
i (xi) (3.18)

∫
Γ

niu0dΓ = 0 (3.19)

Conservation Equations – Vector Form

In the ensuing discussion, the invariant bold-face vector notation of
Gibbs is used with boldface symbols representing vector/tensor quan-
tities. The reader may refer to Gresho and Sani [Gresho and Sani, 1998,
pp. 357 – 359] for an overview of notation for the Navier-Stokes equa-
tions.

Mass Conservation

The mass conservation principle in divergence form is

∂ρ

∂t
+∇ · (ρv) = 0. (3.20)

In the incompressible limit, the velocity field is solenoidal,

∇ · v = 0 (3.21)

which implies a mass density transport equation,

∂ρ

∂t
+ v · ∇ρ = 0. (3.22)

For constant density, Eq. (3.22) is neglected with Eq. (3.21) remaining
as a constraint on the velocity field.
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Momentum Conservation

To begin, the conservation of linear momentum is

ρ

{
∂v
∂t

+ v · ∇v
}

= ∇ · σ + ρf (3.23)

where v = (vx, vy, vz) is the velocity, σ is the stress tensor, ρ is the mass
density, and f is the body force. The body force contribution ρf typi-
cally accounts for buoyancy forces with f representing the acceleration
due to gravity.

The stress may be written in terms of the fluid pressure and the
deviatoric stress tensor as

σ = −pI + τ (3.24)

where p is the pressure, I is the identity tensor, and τ is the deviatoric
stress tensor. A constitutive equation relates the deviatoric stress and
the strain

τ = 2µS. (3.25)

The strain-rate tensor is written in terms of the velocity gradients as

S =
1
2

(
∇v + (∇v)T

)
. (3.26)

Energy Conservation

The conservation of energy is expressed in terms of temperature, T, as

ρCp

{
∂T
∂t

+ v∇T
}

= −∇ · q + q
′′′

(3.27)

where Cp is the specific heat at constant pressure, q is the diffusional
heat flux rate, and q

′′′
represents volumetric heat sources and sinks,

e.g., due to exothermic/endothermic chemical reactions. Fourier’s law
relates the heat flux rate to the temperature gradient and thermal con-
ductivity

q = −κ∇T (3.28)

where κ is the thermal conductivity.

Boundary and Initial Conditions

The prescription of boundary conditions is based on a flow domain
with boundaries that are either physical or implied for the purposes of
performing a simulation. A simple flow domain is shown in Figure 3.1
where the boundary of the domain is Γ = Γ1 ∪ Γ2.
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The momentum equations, Eq. (3.23), are subject to boundary con-
ditions that consist of specified velocity on Γ1 as in Eq. (3.29) or trac-
tion boundary conditions on Γ2 as in Eq. (3.31).

v(x, t) = v̂(x, t) on Γ1 (3.29)

In the case of a no-slip and no-penetration boundary, v = 0 is the
prescribed velocity boundary condition.

The prescribed traction boundary conditions are

σ · n = f̂(x, t) on Γ2 (3.30)

where n is the outward normal for the domain boundary, and f̂ are the
components of the prescribed traction. In terms of the pressure and
strain-rate, the traction boundary conditions are

{−pI + 2µS} · n = f̂(x, t) on Γ2. (3.31)

The traction and velocity boundary conditions can be mixed. In a
two-dimensional sense, mixed boundary conditions can consist of a
prescribed normal traction and a tangential velocity. For example, at
the outflow boundary in Figure 3.1, a homogeneous normal traction
and vertical velocity on Γ2 constitute a valid set of mixed boundary
conditions. A detailed discussion of boundary conditions for the in-
compressible Navier-Stokes equations may be found in Gresho and
Sani [Gresho and Sani, 1998].

The boundary conditions for the energy equation, Eq. (3.8), consist
of a prescribed temperature or heat flux rate. The prescribed tempera-
ture is

T(x, t) = T̂(x, t) (3.32)

and the prescribed heat flux rate is

−κ∇T · n = q̂(x, t) (3.33)

where q̂ is the known flux rate through the boundary with normal n.
The heat flux rate may also be prescribed in terms of a heat transfer
coefficient,

−κ∇T · n = h(T − T∞) (3.34)

where h is the heat transfer coefficient, and T∞ is a reference tempera-
ture.

Initial conditions take on the form of prescribed velocity, species,
and temperature distributions at t = 0, i.e.,

v(x, 0) = v0(x)

T(x, 0) = T0(x). (3.35)
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Remark

For a well-posed incompressible flow problem, the prescribed initial ve-
locity field in equation (3.35) must satisfy equations (3.36) and (3.37) (see
Gresho and Sani[Gresho and Sani, 1987]). If Γ2 = 0 (the null set, i.e., en-
closure flows with n · v prescribed on all surfaces), then global mass
conservation enters as an additional solvability constraint as shown in
equation (3.38).

∇ · v0 = 0 (3.36)

n · v(x, 0) = n · vo(x) (3.37)

∫
Γ

n · vodΓ = 0 (3.38)





4 Multicomponent Flows

Many industrial flows are not homogeneous and involve multiple con-
situent fluids that may range from completely miscible to completely
immiscible with sharp interfaces. In the following, we adopt the ter-
minology of Drew and Passman [Drew and Passman, 1998] and refer
to these as multicompent flows. Specific examples of multicomponent
flows considered here include multispecies flows that are comprised
of completely miscible materials. In constrast, multifluid flows typi-
cally involve immiscible fluids with a countable number of sharp in-
terfaces where techniques such as interface or volume tracking is a
viable computational approach. Finally, multiphase flows may involve
a large number of gas bubbles in a continuous liquid, or conversely
droplets in a continuous gas. The possibilities for multiphase flows
are extremely diverse and and encompasses everything from mists to
annular, slug and bubbly flows.

Multispecies Flows

Mass Conservation

The mass conservation principle in divergence form is

∂ρ

∂t
+

∂(ρvj)

∂xj
= 0. (4.1)

In the incompressible limit, the velocity field is solenoidal,

∂vi
∂xi

= 0 (4.2)

which implies a mass density transport equation,

∂ρ

∂t
+ vj

∂ρ

∂xj
= 0. (4.3)

For constant density, Eq. (4.3) is neglected with Eq. (4.2) remaining as
a constraint on the velocity field.

In general, species transport is considered in terms of mass con-
centrations Z1, Z2, ... for an arbitrary number of species. In order to



40 computational sciences international

simplify the presentation, a single mass fraction is presented repre-
senting a binary mixture. Mass conservation applied to one species
yields for Z1

ρ
∂Z1

∂t
+ ρvi

∂Z1

∂xi
= −

∂J1i

∂xi
+ ṁ1 (4.4)

where J1i is the diffusional mass flux rate, and ṁ1 is a volumetric mass
source. The mass source may include the injection of mass concentra-
tion from a boundary or the source/sink terms from chemical reac-
tions.

The diffusional mass flux rate is based on Fick’s law of diffusion,

J1i = −ρD1ij

∂Z1

∂xj
(4.5)

where D1ij is a tensorial mass diffusivity. Typically, mass diffusivities
are only available as scalars so that

J1i = −ρD1
∂Z1

∂xi
. (4.6)

In the most general form, the species concentration transport equa-
tions are

ρ
∂ZI
∂t

+ ρvi
∂ZI
∂xi

= −
∂JIi

∂xi
+ ṁI (4.7)

where I indicates the mass concentration, i.e., I = 1, 2, ..., 10.
Turning attention to the species transport equations, boundary con-

ditions for Eq. (4.4) may consist of either a prescribed concentration
or a mass flux rate. In the binary mixture example, the prescribed
concentration is

Z1(xi, t) = Ẑ1(xi, t) (4.8)

where Ẑ1 is the known value of concentration for species 1. The pre-
scribed mass flux rate is

−ρD1ij

∂Z1

∂xj
ni = Ĵ1(xi, t) (4.9)

where Ĵ1(xi, t) is the known mass flux rate through the boundary with
normal ni. The prescribed flux rate may also be specified in terms of a
mass transfer coefficient as

−ρD1ij

∂Z1

∂xj
ni = hD∞(Z1 − Z1∞) (4.10)

where hD∞ is the mass transfer coefficient and Z1∞ is a reference species
concentration.
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Mass Conservation – Vector Form

The mass conservation principle in divergence form is

∂ρ

∂t
+∇ · (ρv) = 0. (4.11)

In the incompressible limit, the velocity field is solenoidal,

∇ · v = 0 (4.12)

which implies a mass density transport equation,

∂ρ

∂t
+ v · ∇ρ = 0. (4.13)

For constant density, Eq. (4.13) is neglected with Eq. (4.12) remaining
as a constraint on the velocity field.

In general, species transport is considered in terms of mass con-
centrations Z1, Z2, ... for an arbitrary number of species. In order to
account for the change in mass concentration, mass conservation ap-
plied to the individual species yields for Z1

ρ
∂Z1

∂t
+ ρv · ∇Z1 = −∇J1 + ṁ1 (4.14)

where J1 is the diffusional mass flux rate and ṁ1 is a volumetric mass
source. The mass source may include the injection of mass concentra-
tion from a boundary or the source/sink terms from chemical reac-
tions.

The diffusional mass flux rate is based on Fick’s law of diffusion,

J1 = −ρD1∇Z1 (4.15)

where D1 is a tensorial mass diffusivity. Typically, mass diffusivities
are only available as scalars so that

J1 = −ρD1∇Z1. (4.16)

In the most general form, the species concentration transport equa-
tions are

ρ
∂ZI
∂t

+ ρv · ∇ZI = −∇ · JI + ṁI (4.17)

where I indicates the species mass concentration, i.e., I = 1, 2, ..., 10.
Turning attention to the species transport equations, boundary con-

ditions for Eq. (4.4) may consist of either a prescribed concentration
or a mass flux rate. In the binary mixture example, the prescribed
concentration is

Z1(x, t) = Ẑ1(x, t) (4.18)

where Ẑ1 is the known value of concentration for species 1. The pre-
scribed mass flux rate is

−ρD1∇Z1 · n = Ĵ1(x, t) (4.19)
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where Ĵ1(x, t) is the known mass flux rate through the boundary with
normal n. The prescribed flux rate may also be specified in terms of a
mass transfer coefficient as

−ρD1∇Z1 · n = hD∞(Z1 − Z1∞) (4.20)

where hD∞ is the mass transfer coefficient and Z1∞ is a reference species
concentration.

Multifluid Flows

Following the formulation presented in [Schofield et al., 2010, Schofield
and Christon, 2010] (see also [The Truchas Team, 2003]), the governing
equations for variable-density incompressible viscous flow are

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p +∇ · (µ∇u) + ρg, (4.21)

∇ · u = 0, (4.22)

where u is the velocity, ρ the density, µ is the viscosity, p is the
pressure, and g the gravitational force. Here ρ and µ vary in space and
time. To close the system of equations (4.21) - (4.22), evolution or state
equations are required for ρ and µ. These may be advection equations
or relationships between ρ and µ and chemical concentrations.

In the case of volume-of-fluid methods (aka, volume-tracking meth-
ods), the volume fraction of each fluid in a computational cell is tracked
rather than tracking the density (or viscosity) directly. The volume
fraction is defined as the ratio of the volume of a material relative to
the cell volume. That is, in a computational cell, Ci with volume Ωi,
the volume fraction, Fk, of material k with volume, Vk is defined as

Fk(Ωi) =
Vk
Ωi

. (4.23)

By construction, in any computational cell

Nm

∑
k=1
Fk(Vi) = 1, (4.24)

where Nm is the number of materials in the simulation.
In the finite element discretization, each element is used as a control

volume. The density in an element is given as

ρ =
Nm

∑
k=1
Fkρk (4.25)

where Fk and ρk are respectively the volume fraction and density of
material k. Following [Ferziger, 2003], the element average viscosity is
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computed as

µ =

(
Nm

∑
k=1

Fk
µk

)−1

(4.26)

The volume fractions evolve according to the set of advection equa-
tions,

∂Fk
∂t

+ u · ∇Fk = 0 k = 1, . . . , Nm. (4.27)

Numerical methods for the solution of Eq. (4.21)-(4.22) with contin-
uous density evolved by an advection equation have been presented
by a number of authors [Almgren et al., 1998, Bell and Marcus, 2002,
Calgaro et al., 2008, Fraigneau et al., 2001, Guermond and Quartapelle,
2000, Liu and Walkington, 2007, Pyo and Shen, 2007] and a theoretical
treatment of the equations is presented by Danchin [Danchin, 2003].
Additional methods and results have been presented for simulations
utilizing level sets [Li and Abdou, 2003] and volume tracking [Rud-
man, 1998, Puckett et al., 1997].

The numerical method used here for the simulation of Eq. (4.21)-
(4.22) is a projection method similar to the method of Christon and
Patil [Christon and Patil, 2005] and used by Schofield, et al. [Schofield
et al., 2010, Schofield and Christon, 2010]

Multiphase Flows

Multiphase flows span a broad range of regimes that vary from mists
to annular, slug and bubbly flows and may be laminar or turbulent.
Before proceeding with a discussion of the conservation equations,
averaging and concomitant closure models, a historical review of some
relevant work is presented.

Sha and Soo (1979) [Shaw and Soo, 1979] present a brief summary
of the effects of including the foces due to the interaction o fthe static
pressure p and the volume freaction αk. Know as the p∇αk term, differ-
ent investigators have disagreed on the effects of including this term
in the momentum equations. Most recently, Chang and Liou (2007)
[Chang and Liou, 2007] have pointed out the importance of this term
in the limiting case of a constant pressure-velocity steady-flow flow. In
the work by Sha and Soo [Shaw and Soo, 1979], they suggest including
a parameterized variant of the pressure gradient term

∇pαk = αk∇p + (1− Bk)p∇αk (4.28)

where Bk depends on particle size, fluid properites, flow characteris-
tics, etc. They present evidence supporting the need for a full range of
0 ≤ Bk ≤ 1.

The issue of ill-posed multiphase formulations, where each fluid
is inviscid, was first identified in the work by Stewart and Wendroff
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(1984) [Stewart and Wendroff, 1984]. This work considered the so-
called 6-equation model and showed that it is ill-posed, i.e., the flux
Jacobian posesses imaginary eigenvalues. In the presense of interfacial
drag, they show that under certain conditions, the discrete system may
be unstable. In contrast, they suggest that, in the presence of damp-
ing terms, i.e., interfacial drag, viscosity, etc., that there is a range of
parameters where the solution will remains stable. That is when the
spatial resolution is not too small relative to the physical damping
mechanisms.

Besnard and Harlow (1988) [Besnard and Harlow, 1988] presents a
two-field turbulence model that considers the turbulence in both fields
present. The damping due to the presence of particls is considered,
and the work includes a theoretical derivation of the turbulent kinetic
energy due to particle drag.

Bestion (1990) [Bestion, 1990] presents the physical closure mod-
els used in the CATHARE code. CATHARE is a two-dimensional
thrmal-hydraulic code for simulating the flow conditions present in
primary and secondary circuits of pressurized water reactors. Al-
though CATHAR is a two-dimensional code, the clousure models are
essentially one-dimensional in nature and of limited use for develop-
ment of a three-dimensional simulation capability.

Kashiwa, et al. (1993) [Kashiwa et al., 1993] discuss the implicit
continuous-fluid Eulerian (ICE) method for multiphase flows. ICE re-
lies on a Lagrangian-remap formalism and results in unconditional
stability in terms of the material sound speed. The ICE algorithm is a
pressure-based solution method, and suggests the possibility of using
projection methods in a pure Eulerian solution method.

In a subsequent report, Kashiwa and Rauenzahn (1994) [Kashiwa
and Rauenzahn, 1994] present an multimaterial formalism that en-
compasses many of the ideas present in the so-called “four-field, two-
phase” formulations. Here, the exact ensemble averaged conservation
equations are derived, and the resulting equations are shown to be
well-posed for a forward in time numerical solution method. In this
work, a single pressure model is assumed for the particle-fluid sys-
tems considered, and justified in the limit of a solenoidal velocity field
∇ · v. The resulting conservation equations are presented summarized
in tabular form and shown to be comparable to many of the current
multifield formulations, e.g., Lahey [R. T. Lahey, 2009].

A second-order accurate solution method based on high-resolution
methods is presented by Tiselj and Petelin (1997) [Tiselj and Petelin,
1997]. Here, the two-fluid model is based on the RELAP5 code which
is a six equation one-dimensional model. A splitting technique is used
to treat source terms with second-order accuracy, and the final method
is applied to a two-phase shock tube.
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The question of well-posedness for the two-fluid multiphase flows
was considered by Song and Ishii (2000) [Song and Ishii, 2000]. Here, a
characteristic analysis for the governing equations for a one-dimensional
two-fluid model was considered. They show that the two-fluid model
is stable for relatively broad range of momentum flux parameters that
render the one-dimensional model strictly hyperbolic, albeit for one-
dimensional problems. In subsequent work, Song (2003) [Song, 2003]
demonstrates the application of the momentum flux parameters for
two-phase channel flow. Here, the momentum flux parameters are
based on the void function, wave number, drag coefficient and relative
velocity between phases.

The FLICA-4 code is presented by Toumi, et al. (2000) [Toumi et al.,
2000]. The solution procedure is based on an extension of Roe’s ap-
proximate Riemann solver and use of Newton’s method for the solu-
tion of the coupled non-linear system of equations. A full-core simu-
lation for a pressurized water reactor is presented.

The work by Cěrne, Petelin and Tiselj (2001) [Černe et al., 2001]
presents a hybrid volume-tracking/two-fluid model for two-phase flow.
In regions where the grid resolution is sufficient to reconstruct sharp
interfaces, the two-phase problem is handled with the volume-of-fluid
method. In regions where there is insufficient resolution to represent
the interface, a two-fluid model is used. Of particular interest is the
development of the criteria for transition from volume-tracking model
to a dispersed two-phase representation.

Lahey and Drew (2001) [R. T. Lahey and Drew, 2001] develop a mul-
tidimensional four-field, two-fluid model and apply it to a series of
problems where experimental data is available. The four-field model
is considered desirable because it naturally handles continous vapor,
continuous liquid, dispersed vapor, and dispersed liquid. The test
cases presented in this work are suitable for the development and val-
idation of a two-phase flow implementation.

Andianov’s Ph.D. thesis (2003) [Andrianov, 2003] uses a modified
Roe flux to solve the fully compressible multiphase system of equa-
tions. Here, the application is deflagration-to-detonation. The for-
mulation and solution methods appear to be better suited to reactor
accident scenarios.

In 2003, Yadigaroglu [Yadigaroglu, 2003] proposed the term “CMFD”
for computational multiphase fluid dynamics in a letter to the editor
of the International Journal of Multiphase Flow. To date, the CFD com-
munity has not embraced this terminology – for obvious reasons. Re-
lated to Yadigaroglu’s letter, the paper by Balachandar and Properetti
(2005) [Balachandar and Properetti, 2005] presents a brief summary of
the computational approaches to disperse multiphase flow.

Staedtke, et al. (2005) [Staedtke et al., 2005] summarize the status
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of the ASTAR project. A detailed presentation of the conservation
equations and associated closure models is presented. In this work,
a number of representative test problems are presented. The focus
is primarily on compressible solution techniques, i.e., density-based
methods, that include residual distribution and AUSM.

Chang and Liou (2007) [Chang and Liou, 2007] present a single-
pressure formulation with the AUSM+ scheme for multiphase strati-
fied flows. Of particular interest here is the treatment of the pressure
gradient in the momentum equations where a consistent treatment is
required for correct constant velocity-pressure flows.

Guelfi, et al. (2007) [Guelfi et al., 2007] present an overview of the
the NEPTUNE software for thermal-hydraulic comptuations.

Lahey (2009) [R. T. Lahey, 2009] presents an assessment of closure
models in the context of a four-field, two-fluid formulation. Model as-
sessment is conducted using NPHASE [InterPhase Dynamics, 2008a,b,
2010]. This paper also presents an argument for use of the PHASTA
code for the so-called DNS of multifluid problems where sharp inter-
faces are represented by level-sets.

Podowski (2009) [Podowski, 2009] presents an overview of various
closure models for multiphase flows with an emphasis on the so-called
“mechanistic” modeling. Here, the process of decomposing the mo-
mentum source terms into various component forces by superposition
is outlined. In addition, a multigroup formulation for representing
bubble breakup and coalescence is presented.

In the work by Bestion, et al. (2009) [Bestion et al., 2009], a review
of validation data for multiphase CFD codes is presented. The review
is presented in the context of the NURESIM integrated project that is
focused on developing a standard software platform for nuclear re-
actor simulations. Here, a number of canonical reactor problems are
presented that include departure from nucleate boiling, dry out, etc.

Berry (2010) [Berry, 2010] presents requirements for multiphase flow
simulation of light water reactors for the Consortium for Advanced
Simulation of Light water reactors (CASL).

The topics of boiling and condensation are presented by Shaver,
et al. (2011) [Shaver et al., 2011]. In a related paper, Shaver, et al.
(2011) [Shaver et al.] present a validation study using NPHASE and
comparing to experimental data for bubbly flow in a cylindrical pipe.
Here, the drag, lift, virtual mass and turbulent dispersion forces are
defined.

Štrubelj and Tiselj (2011) [Štrubelj and Tiselj, 2011] present a simpli-
fied two-phase model that assumes each component velocity is solenoidal,
i.e., ∇ · vk = 0. In this work, a project-like solution algorithm is out-
lined where the momentum equations are solved in an iterative fash-
ion. Although the algorithm is referred to as a SIMPLE method, the
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formulation is presented so that it appears to be a second-order incre-
mental projection method.

Conservation Equations

This section summarizes the ensemble averaging and resulting conser-
vation equations for multiphase flow. The ensemble averaging and
nomenclature follows that used by Drew and Passman [Drew and
Passman, 1998].

Ensemble Average Variables

For multiphase flow, the average is defined in terms of a component
indicator

Xk (x, t; µ) =

{
1 if x ∈ k in realization µ

0 otherwise
(4.29)

with an ensemble average is defined as

Φ̄ (x, t) =
∫
E

Φ (x, t; µ) dm (µ) (4.30)

where dm (·) is the density for the measure (probability) on the set
of all processes E . Reynolds rules of linearity and commutativity ap-
ply the ensemble average, and are used to develop the averaged fluid
equations of motion.

Here, a short list of some relevant ensemble averaged variables is
presented before the phasic conservation equations are discussed.

Volume Fraction:
αk = Xk (4.31)

The ensemble averaged indicator function, Xk is colloquially re-
ferred to as the volume fraction, and represents the volume of phase-
k in the total volume. Technically, this is the expected value of a vol-
ume of phase-k in a unit volume where Xk is the indicator function
for phase-k.

Interfacial Area Density:

Ak = −nk · ∇Xk

[
1
L

]
(4.32)

Phase Density:

ρk
X =

Xkρ

αk

[
M
L3

]
(4.33)

Here, the superscript X indicates that the ensemble average is weighted
by the indicator function Xk.
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Mass Source:

ṁk =
ṁkXk

αk

[
M

TL3

]
(4.34)

Phase Velocity:

vk
X =

Xkρvk

αkρk
X

[
L
T

]
(4.35)

Internal Energy:

ek
Xρ =

Xkρek

αkρk
X

[
E
M

]
(4.36)

Here, the superscript Xρ indicates that the ensemble average is
weighted by the indicator function Xk, and density ρk.

Entropy:

sk
Xρ =

Xkρsk

αkρk
X

[
E

Mθ

]
(4.37)

Stress:

Tk
Xρ

=
XkTk

αk

[
F
L2

]
(4.38)

Heat Flux:

qk
Xρ =

Xkqk
αk

[
E

TL2

]
(4.39)

Here, the averaged heat flux is written in terms of the molecular
heat flux qk is

Body Force:

fk
Xρ

=
Xkfk
αk

[
F
M

]
(4.40)

Volumetric Energy Source:

Qk
Xρ

=
XkQk

αk

[
E

TL3

]
(4.41)

Interfacial Mass Source:

Γk = ρkek(vk − vki
) · ∇Xk

[
M

T · L3

]
(4.42)

Interfacial Momentum Source:

Mk
X
= −Tk · ∇Xk

[
F
L3

]
(4.43)

Interfacial Heat Source:

Ek
X
= qk · ∇Xk

[
E
L3

]
(4.44)



the hydra toolkit computational fluid dynamics theory manual csi-2015-1 rev. a,

may 2017 49

Interfacial Energy Source:

ekiΓk = ρkek(vk − vki
) · ∇Xk

[
E

T · L3

]
(4.45)

Interfacial Work:

Wk
X
= −Tk · vk · ∇Xk

[
E

TL3

]
(4.46)

Ensemble Averaged Conservation Equations

Dropping the overline, and understanding that the terms correspond
to the averaged variables defined above, the averaged continuity equa-
tion for phase-k is

∂αkρk
∂t

+∇ · (αkρkvk) = Γk + αkṁk (4.47)

where
Γk = ρk(vk − vkI ) · ∇Xk (4.48)

and vkI is the interfacial velocity for phase-k.
The averaged momentum equation can be written as

∂αkρkvk
∂t

+∇· (αkρkvkvk) = −αk∇p+∇·
{

αkµk(∇vk +∇Tvk)
}
+Mk + αkρkf

(4.49)
where Mk denotes various inter-phase momentum exchange terms,
e.g., drag, lift, turbulent dispersion, virtual mass, lubrication, etc., see
also [Yeoh and Tu, 2009].

The averaged internal energy equation is

∂αkρkek
∂t

+∇· (αkρkvkek) = −∇· (αkqk)+ αkQk + αkTk : ∇·vk +Ek + ekΓk

(4.50)

Interfacial Mass Transfer

From the work by Yeoh and Tu [Yeoh and Tu, 2009], the mass transfer
rate per unit volume is

Γk =
hAI(Tk − Tkliq

)

h f g
(4.51)

Interfacial Momentum Transfer

Drag force

The interfacial drag force, FD
d , acting on a particle in steady-state con-

dition can be given in terms of the drag coefficient, CD, based on the
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relative velocity as

FD
d = −1

2
CD

αd
Bd

ρc Ad |vr| vr (4.52)

where Ad is the projected area of a typical particle, αd/Bd denotes
the particle volume fraction to volume ratio, and vr = vd − vc is the
relative velocity between the disperse (bubbly) and continuous phases,
denoted by subscripts c and d, respectively. Requiring an equal and
opposite force acting on the continuous phase, FD

d = −FD
c , ensures that

Newton’s third law and, consequently, the momentum conservation
law hold. Assuming spherical bubbles for the disperse phase, with
surface Ad = r2

dπ, and volume Bd = 4r3
dπ/3, equation (4.52) becomes

FD
d = − 3

8rd
CDαdρc |vr| vr (4.53)

Various drag models exist and are available, including a simple constant-
coefficient (CD = const.), the Ishii-Zuber [Ishii and Zuber, 1979], the
Tomiyama [TOMIYAMA et al., 1998], and the Bozzano-Dente [Bozzano
and Dente, 2001] models.

Lift force

Lift is another force that exchanges momentum between fields in the
ensemble-averaged formulation for multiphase flows. A common way
to implement the lift force acting on the disperse phase is given by
[Auton et al., 1988]

FL
d = −CLαdρcvr × (∇× vc) (4.54)

where CL is the lift coefficient, αd is the disperse-phase volume frac-
tion, ρc is the density of the continuous phase, and vr = vd − vc is the
relative velocity between the disperse (bubbly) and continuous phases,
denoted by subscripts c and d, respectively. Similar to the drag force,
the lift force is also required to be anti-symmetric: FL

d = −FL
c . Various

lift models exist and are available, including the simplest, constant-
coefficient (CL = const.) model.



5 Arbitrary Lagrangian-Eulerian Formulation

This chapter presents the Arbitrary Lagrangian-Eulerian (ALE) formu-
lation used in flow solver. The discussion begins with background on
the required vector calculus and ends with the master balance equa-
tions used to develop the solution methods discussed in subsequent
chapters of this document. The notes presented here were based, in
part, on the work by Scovazzi and Hughes [Scovazzi and Hughes,
2007], Donea [Donea, 1983], Gurtin [Gurtin, 2003], Drumheller [Drumheller,
1998], Förster, Wall and Ramm [C. Forster and Ramm, 2007], Hron and
Turek [Hron and Turek, 2006]. The reader may consult these references
for additional details.

Basics

This section outlines some of the fundamentals of vector calculus re-
quired for the ALE formulation.

Invertible map

Let ψ be a smooth, invertible map from ΩX to Ωx, as shown in Figure
5.1, such that

ΩX = ψ(Ωx) (5.1)

and
X = ψ(x) (5.2)

Figure 5.1: Invertible map.

Jacobian of the map

Fψ =
∂x
∂X

or Fψij =
∂xi
∂Xj

. (5.3)

The map is one-to-one and invertible, so

det(Fψ) > 0 (5.4)

or
J = det(Fψ); J > 0 (5.5)
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Differential quantities transform as

dx = FψdX (5.6)

or 

dx

dy

dz


=



∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z





dX

dY

dZ


(5.7)

Volume relationships

The differential volume transforms as

dΩx = JdΩX (5.8)

and
cof(Fψ) = det(Fψ)F−1

ψ (5.9)

since J > 0, i.e., det(Fψ) > 0.

Nanson’s formula

Nanson’s formula for the normal is

nxdΓx = cof(Fψ)nXdΓX (5.10)

or
nxdΓx = JF−1

ψ nXdΓX. (5.11)

Kinematics

The starting point for the kinematics are the three frames:

• Material or Lagrangian (X−ΩX)

• Current or Eulerian (x−Ωx)

• Referential (ALE) (¸−Ωξ)

Figure 5.2: Maps used in the ALE for-
mulation.

Lagrangian-to-Eulerian Map

X - Current position of material point X

φ - Map from X to x at each time t
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Ωx = φ(Ωx, t), ∀ t ≥ 0,

x = φ(X, t), ∀ X ∈ ΩX.
(5.12)

At t = 0, ΩX and Ωx coincide thus

φ(·, 0) = Id(·) (5.13)

where Id is the identity map. X identifies a point at time t identified in
the Eulerian reference at x. X = φ−1(x, t) since, φ(X, t) is invertible.

Displacement

u = φ(X, t)− φ(X, 0)

u = φ(X, t)− X

u = x(t)− X

(5.14)

Material velocity

v =
∂φ

∂t

∣∣∣
X
= φ̇

v =
∂u
∂t

∣∣∣
X
= u̇

(5.15)

Deformation gradient

F = ∇Xφ = ∇Xx (5.16)

Fij =
∂xi
∂Xj

(5.17)

F =



∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z


(5.18)

J = det
(
F
)

(5.19)

Time derivative (Lagrangian)

α̇(x, t) =
∂α(x, t)

∂t

∣∣∣∣
X

=
∂α(φ(x, t), t)

∂t

∣∣∣∣
X

(5.20)
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applying chain rule

α̇(x, t) =
∂α

∂t

∣∣∣∣
x
+∇xα · ∂φ

∂t

∣∣∣∣
X

=
∂α

∂t

∣∣∣∣
x
+∇xα · v

(5.21)

where v =
∂X
∂t

∣∣∣
X
≡ “velocity.”

Inverse mapping

F−1 = ∇xX or F−1
ij =

∂Xi
∂xj

(5.22)

F−1 =



∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z


(5.23)

Time Derivative of the Jacobian

J̇ = J∇x · v (5.24)

Lagrangian-to-Referential (ALE) map

This transformation tracks the motion of the referential frame as ob-
served from the Lagrangian frame.

Ωξ = φ̃(ΩX , t), ∀ t ≥ 0,

¸ = φ̃(X, t), ∀X ∈ ΩX .
(5.25)

Assuming that ΩX and Ωξ coincide at t = 0, we reproduce an iden-
tity map φ̃(·, 0) = Id(·).

The displacement of the “referential” domain as observed from the
Lagrangian reference frame is defined as ũ.

Displacement

ũ = φ̃(X, t)− φ̃(X, 0)

= φ̃(X, t)− X

= ¸(t)− X

(5.26)
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Velocity

The velocity of the referential frame observed from the Lagrangian
frame for a discrete setting is defined as

ṽ =
∂φ̃

∂t

∣∣∣
X
=

∂ũ
∂t

∣∣∣
X

(5.27)

This velocity is the “mesh velocity” in a discrete sense and is analogous
to the material velocity.

Deformation gradient

F̃ = ∇Xφ̃ = ∇X¸ (5.28)

F̃ij =
∂ξi
∂Xj

(5.29)

where ¸ = (ξ, η, ζ).

F̃ =



∂ξ

∂X
∂ξ

∂Y
∂ξ

∂Z

∂η

∂X
∂η

∂Y
∂η

∂Z

∂ζ

∂X
∂ζ

∂Y
∂ζ

∂Z


(5.30)

J̃ = det
(
F̃
)

(5.31)

Time derivative

α̇(¸, t) =
∂α

∂t

∣∣∣∣
¸
+ ṽ · ∇ξ α (5.32)

where, ∇¸(·) means, with respect to ¸.

Time derivative of the Jacobian J̃

The time derivative of the Jacobian reads:

˙̃J = J̃∇¸ · ṽ (5.33)

Where, for solenoidal mesh velocities, ∇¸ · ṽ = 0, the time derivative

of the Jacobian is ˙̃J = 0.
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Reynolds Transport Theorem

In order to define the Reynolds transport theorem, several definitions
are required.

Ωx a domain that deforms according to φ with velocity vm =
∂φ

∂t
∣∣
X

and Ωx = φ(ΩX).

Γx the boundary of the deforming domain with nx outward normal
vector.

Using the previous definitions, the Reynolds transport theorem is

d
dt

∫
Ωx

α =
∫

Ωx

∂α

∂t

∣∣∣
x
+
∮

Γx
αvm · nx (5.34)

or
d
dt

∫
Ωx

α =
∫

Ωx

[
∂α

∂t

∣∣∣
x
+∇x · (αvm)

]
(5.35)

Master Balance Equation

Master balance equations are used here as a way to generically express
the conservation laws in the ALE framework.

Generic Forms

Following Scovazzi and Hughes [Scovazzi and Hughes, 2007], the scalar
form for a material domain is

d
dt

∫
Ωx=φ(ΩX)

α = −
∮

Γx
f(α) · nx +

∫
Ωx

S (5.36)

where f(α) is the flux vector and S is a volumetric source, and φ(ΩX)

is a smooth, invertible map, such that we can write

d
dt

∫
Ωx

α =
∫

Ω

∂α

∂t

∣∣∣∣
x
= −

∮
Γx

f(α) · nx +
∫

Ωx
S (5.37)

Rearranging, and using the divergence theorem

∫
Ωx

{
∂α

∂t

∣∣∣∣
x
+∇ · f(α)− S

}
= 0 (5.38)

This is true for any Ωx, so

∂α

∂t

∣∣∣
x
+∇ · f(α) = S. (5.39)

Using the Reynolds transport theorem Eq. (5.35) and Eq. (5.37)∫
Ωx

∂α

∂t

∣∣∣
x
=

d
dt

∫
Ωx

α−
∮

Γx
α

∂φ

∂t

∣∣∣
x
· n (5.40)
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where
∂φ

∂t

∣∣∣
x
= vm (5.41)

Here, vm is the velocity measured from the point of view of X and is
the mesh velocity in a discrete sense. Using this velocity in Eq.(5.37)
yields

d
dt

∫
Ωx

α−
∮

Γx
αvm · nx = −

∮
Γx

f(α) · nx +
∫

Ωx
S (5.42)

or
d
dt

∫
Ωx

α +
∮

Γx

{
f(α)− αvm

}
· nx −

∫
Ωx

S = 0. (5.43)

Recalling that φ(ΩX) is smooth and using the divergence theorem∫
Ωx

{
∂α

∂t
+∇ · (f(α)− αvm)− S

}
= 0, (5.44)

and in strong form

∂α

∂t
+∇ · (f(α)− αvm)− S = 0 (5.45)

which is form-equivalent to Eq. (105) in [AVL, 2004] and Eq. (13) in
[C. Forster and Ramm, 2007].

Vector Form

The vector form of the master balance equation reads

d
dt

∫
Ωx=φ(ΩX)

ff = −
∮

Γx
F(ff) · nx +

∫
Ωx

S (5.46)

where F is a flux vector that, for instance, could include advective,
viscous, and pressure-gradient terms.

Following the scalar form,∫
Ωx

{
∂ff
∂t

∣∣∣∣
x
+∇ · F(α)− S

}
= 0 (5.47)

using the Reynolds transport theorem,∫
Ωx

∂ff
∂t

∣∣∣∣
x
=

d
dt

∫
Ωx

ff−
∮

Γx
(ffvm) · nx (5.48)

Thus, the vector form becomes

d
dt

∫
Ωx

ff +
∮

Γx
F(ff) · nx −

∮
Γx
(ffvm) · nx =

∫
Ωx

S (5.49)

and finally

d
dt

∫
Ωx

ff +
∮

Γx

(
F(ff)− ffvm

)
· nx =

∫
Ωx

S (5.50)

where ffvm = ffivmj .
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Navier-Stokes Equations

In this section, the conservation equations are derived using the master
balance equation.

Continuity equation

For the continuity equation, define

f (α) = ρv, α = ρ, and S = 0. (5.51)

This yields
∂ρ

∂t
+∇ · (ρv− ρvm) = 0 (5.52)

which is the continuity equation. The integral form reads

d
dt

∫
Ωx

ρ +
∮

Γx
ρ(v− vn) · nx = 0 (5.53)

Energy equation

The energy equation is obtained by using Eq.(5.43) and after apply-
ing a series of manipulations and simplifying assumptions, the energy
equation, in terms of temperature, reads

α = ρCpT, f(α) = ρCpTv + q, q = −κ∇xT (5.54)

d
dt

∫
Ωx

ρCpT +
∮

Γx
ρCpT(v− vm) · nx =

∮
Γx

κ∇xT · nx +
∫

Ωx
q
′′′

(5.55)

where q
′′′

is the volumetric heat source and κ is the thermal conduc-
tivity. Following similar steps as in the continuity equation, the strong
form is

ρCp
∂T
∂t

+∇x ·
{

ρCpT(v− vm)
}
= ∇x · (κ∇xT) + q

′′′
(5.56)

In terms of enthalpy, the energy equation reads

d
dt

∫
Ωx

ρh +
∮

Γx
ρh(v− vm) · nx =

∮
Γx

κ∇xT · nx +
∫

Ωx
q
′′′

(5.57)

and in strong form is

∂ρh
∂t

+∇x ·
{

ρh(v− vm)
}
= ∇x · (κ∇xT) + q

′′′
(5.58)
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Momentum equation

In order to derive the momentum equation the following variables are
introduced

α = ρv (5.59)

F(α) = ρvv−œ (5.60)

S = f (5.61)

œ = −pI + µ

(
∇v + (∇v)T

)
(5.62)

Using Eq. (5.50) the momentum equation can be written as:

d
dt

∫
Ωx

ρv +
∮

Γx
(ρvv− ρvvm −œ)nx =

∫
Ωx

f (5.63)

Rearranging and defining

ø = µ
(
∇v + (∇v)T

)
(5.64)

œ = −pI + ø (5.65)

Therefore, the integral form of the momentum equations can be
written as

d
dt

∫
Ωx

ρv +
∮

Γx
ρv(v− vm) · nx = −

∫
Ωx
∇x p +

∮
Γx

ø · nx +
∫

Ωx
f

(5.66)
The strong form of momentum conservation is

∂ρv
∂t

+∇ ·
{

ρv(v− vm)
}
= −∇p +∇ · ø + f (5.67)

See Eq. (13) in Förster, Wall and Ramm [C. Forster and Ramm, 2007]
for comparison.





6 Turbulence Models

This chapter introduces the turbulence models that are either already
implemented, or being implemented in the Hydra Toolkit. A brief
review of turbulence and modeling techniques is presented to set the
theoretical foundation for readers unfamiliar with this topic.

The flow solvers in the Hydra Toolkit are designed to incorporate
both well-established and state-of-the-art turbulence models, ranging
from traditional Reynolds-averaged Navier-Stokes (RANS) through large-
eddy simulation (LES) to hybrid RANS-LES models.

• RANS models

– Spalart-Allmaras model §6.3

– Re-normalized group (RNG) k− ε model §6.3

– Shear stress transport (SST) k−ω model 6.3

– k-ε-v2- f model §6.3

– k-ε-ζ- f model §6.3

• LES models

– MILES or ILES: This family of models is obtained using a mono-
tonicity preserving advection treatment (MILES) and is also re-
ferred to as implicit LES (ILES).

– Smagorinsky model §6.4

– Wall-adapted large eddy (WALE) model §6.4

– ksgs model

– Localized dynamic kinetic energy (LDKM) ksgs model §6.4

– Variational multi-scale model

• Hybrid RANS/LES models

– Detached-Eddy Simulation (DES) §6.5

– Delayed DES (DDES) model
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In the following, a very brief overview of turbulence theory is given
in §6.1 followed by the basics of direct numerical simulation (DNS)
in §6.2. Then the individual turbulence models (listed above) are de-
scribed in more detail in §6.3–6.5. Finally, §6.6 describes the statistics
that can be extracted from the turbulent fields.

Turbulent flows

The equations for conservation of mass, momentum, and energy, i.e.,
Eqs. (1.1)–(1.3) and (1.4)–(1.6), are believed to contain all the physics
required to describe a turbulent flow. However, the extreme complex-
ity of the Navier-Stokes equations precludes the derivation of analyt-
ical solutions in all but exceptionally simplified cases. Therefore, in
general, numerical methods are applied to obtain solutions for most
flow problems. In addition to the complexity of the governing equa-
tions, obtaining a solution becomes more demanding if the flow is in
the turbulent regime.

Presenting a single unambiguous mathematical definition of tur-
bulence is difficult. We give a description of turbulence rather than a
formal definition. Turbulence is a flow property, independent of the
fluid, with the following characteristics [Tennekes and Lumley, 1997,
Pope, 2000]:

Irregularity: The Navier-Stokes equations present chaotic behavior in
the turbulent regime. This implies that the evolution of the equa-
tions is sensitive to small perturbations in initial and boundary
conditions. Therefore, the exact reproduction of a turbulent flow
realization requires exactly matching all initial and boundary con-
ditions, which cannot be satisfied in reality. This sensitivity and
chaotic behavior are only triggered at high Reynolds number, ex-
plaining why the evolution of laminar flows is completely deter-
ministic and can always be exactly reproduced.

Enhanced diffusivity: The transfer of mass, momentum, and energy is
significantly enhanced by turbulence.

Large Reynolds Number: At large Reynolds number – when the iner-
tial forces in the fluid are much larger than the viscous forces –
the Navier-Stokes equations exhibit a chaotic motion that induces a
stochastic behavior of the flow variables.

Three-dimensional: Turbulence is characterized by the presence of vor-
ticity fluctuations. These effects are present even when the mean
flow is two-dimensional. In fact, vortex stretching, which only oc-
curs in three dimensions, is an important process responsible for
the generation of turbulent kinetic energy.
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Dissipative: Turbulence is a dissipative process, where the turbulent
kinetic energy generated in the fluid flow, is converted into internal
energy by viscous effects. A constant supply of energy is required
to maintain a turbulent flow; if that energy is absent, the turbulent
fluctuations decay.

Multi-Scale: Turbulence is characteristic of nonlinear flow interactions
on a broad range of spatial scales. The larger the Reynolds number
the larger the range of scales in the flow, presenting a challenge for
numerical calculations.

Continuous: Turbulent flow is governed by the Navier-Stokes equa-
tions. Regardless of how small the scales of turbulence become,
they will always be bigger than molecular scales, satisfying the
conditions of continuous media embodied in the derivation of the
Navier-Stokes equations [Segel, 1965, Vincenti and Kruger, 1965].

Predicting the instantaneous state of high-Reynolds-number turbu-
lence is virtually impossible and from the practical point of view un-
necessary. From the practical viewpoint, the only sensible way to gain
physical insight into turbulence is through statistical analysis [Monin
and Yaglom, 1979].

While in laminar flows, it makes sense to ask questions such as
“what is the velocity or pressure at a given point in space and time?”, in
turbulent flows the aim of the inquiry must be different. In turbulent
flows the variables are random, therefore their (instantaneous) values
are inherently unpredictable. A theory (or method) can, however, pre-
dict the probability of events. Thus the sensible question in turbulent
flow becomes “what is the probability that the velocity or pressure will be
less (or more) than a given value at a space-time point?” In other words, a
statistical description aims at determining probabilities (i.e. joint prob-
ability density functions of the flow variables) and their derived statis-
tics, such as means, variances, correlations, etc.

Figure 6.1: Visualization of turbulent
flow fields: isotropic turbulence (figure
courtesy of Tokyo Institute of Technol-
ogy

One important characteristic of turbulent flows is the presence of
multiple time and length scales. These scales can be characterized
as large structures that cascade into smaller structures, as shown in
Fig. 6.1. In the turbulence literature these scales are known as eddies1,

1 For a formal spectral definition of ed-
dies see Tennekes and Lumley [Tennekes
and Lumley, 1997].

which are loosely defined as coherent regions in the flow, see Fig. 6.1.
Early turbulence research noted that eddies tend to decay into smaller

structures until they reach a point where they cannot reduce further
in size. This behavior is reported artistically in the original paper by
Lewis F. Richardson [Richardson, 1922]

Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.
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Most of turbulence theory is developed for constant-density, single-
component flows in a statistically stationary and equilibrium state.
Andrey Kolmogorov helped to establish the foundations of this theory
[Tennekes and Lumley, 1997, Pope, 2000, Monin and Yaglom, 1979],
when he postulated two influential hypotheses for turbulence [Kol-
mogorov, 1991]. These hypotheses serve as cornerstones to most ap-
proaches in turbulence modeling.

Kolmogorov’s hypothesis of local isotropy. For very high Reynolds num-
ber flows, the small scales of turbulent motion are locally isotropic
(i.e. no spatial direction is preferred, see Fig. 6.1 and are uniquely
determined by the kinematic viscosity, ν = µ/ρ, and the kinetic
energy dissipation rate,

ε = 2νsijsij (6.1)

where

sij =
1
2

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(6.2)

is the strain rate of the velocity fluctuations, v′i = vi − vi, about the
mean velocity, vi.

This hypothesis does not imply that the turbulence fluctuations are
in general isotropic, but states that as the large anisotropic eddies of
the flow, see Fig. 6.1, break into smaller ones, the anisotropy of the
flow, characterized by the integral length, L, and velocity, v, scales,
is progressively lost as the eddies break down to scales so small
that the turbulence becomes isotropic, see Fig. 6.1. At those scales,
known as Kolmogorov micro-scales of length, η, and time, τ, all the
anisotropic information of the flow is lost and are characterized by
only ν and ε:

η =

(
ν3

ε

)1/4

(6.3)

τ =

(
ν

ε

)1/2

(6.4)

Kolmogorov’s similarity hypothesis. At very high Reynolds numbers at
scales much larger than the micro scale but much smaller than the
integral scale, η � r � L, the statistics are determined by ε inde-
pendent of ν.

This hypothesis implies that in the range of scales 1/L � κ � 1/η

(expressed in terms of wave numbers) the kinetic energy spectrum
is universally determined by the local length scale, κ = 2π/r, and ε.

E(κ) = Cε2/3κ−5/3 (6.5)



the hydra toolkit computational fluid dynamics theory manual csi-2015-1 rev. a,

may 2017 65

where E(κ) is the power density spectrum of the turbulent kinetic
energy, v′iv

′
i/2, and C is an universal constant. This range of scales

is known as the inertial range, and it is expected that constant-
density, single-component turbulence in equilibrium states for any
sufficiently high Reynolds number flow will follow Eq. (6.5).

Kolmogorov’s hypotheses are almost always assumed in the devel-
opment of turbulence models. However, it is important to appreciate
their strict range of applicability: single-component, constant-density,
shear-driven, equilibrium flows in a statistically stationary state.

Direct Numerical Simulation

The modern analysis of fluid dynamics relies on numerical algorithms
to obtain solutions for the Navier-Stokes equations in general cases.
Today obtaining solutions for low Re, i.e. laminar, flows is a common
practice. However, when the flow is turbulent its multi-scale nature,
three-dimensional, and dissipative characteristics pose great computa-
tional challenges.

In turbulence the range of length and time scales in a flow field is
proportional to η/l ∼ Re−3/4 and τu/l ∼ Re−1/2, respectively, see
e.g. [Tennekes and Lumley, 1997]. Here, η and τ are the Kolmogorov
length and time scales, respectively, while u and l are the inertial-rage
velocity and length scales, respectively. Since turbulence is a dissipa-
tive phenomenon, its prediction requires resolving all scales present in
the flow, which is always three-dimensional.

Direct Numerical Simulation (DNS) is a numerical technique where
all scales of a turbulent flow are resolved. DNS is intended to study
canonical flow problems where the objective is to gain insight in the
physics of turbulence [Moin and Mahesh, 1998]. Very accurate numeri-
cal schemes are required in space and time. These schemes are usually
in the form of pseudo-spectral methods or compact finite difference
schemes that unfortunately, due to their complexity, can only be imple-
mented in simple geometries discretized with structured meshes and
periodic boundary conditions. Practitioners of DNS take great care in
demonstrating the actual scales their numerical algorithms resolve (with
well-quantified numerical errors) for a given flow and Reynolds num-
ber. This is essential, as the statistics may be influenced by numerical
artifacts, such as dissipative numerical discretization and inadequate
grid resolution.

Estimates of the total number of grid points, N, and total number of
time steps, M, required to resolve all relevant scales in homogeneous
isotropic forced turbulence by DNS predict a scaling of N3 ∼ Re9/2

λ

and M ∼ Re3/2
λ based on the Taylor-scale Reynolds number, Reλ,
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[Pope, 2000]. This means that the total cost of a simulation is propor-
tional to N3M ∼ Re6

λ. From these estimates, it is clear that resolv-
ing all relevant scales with today’s computers is only possible at low
and moderate Reynolds numbers. Another interesting consequence
of the above estimate is that the relative computational effort spent
on resolving the smallest (dissipative) scales compared to that of the
energy-containing and inertial subrange combined also increases ex-
ponentially with the Reynolds number [Pope, 2000]. Consequently,
even if more and more powerful computers are available in the future
for all-scale-resolving turbulence simulations, more and more effort
will be proportionally spent on computing the smallest scales which
are the least interesting from the practical viewpoint. Therefore, for
engineering purposes statistical methods are preferred which require
approximations.

Reynolds-Averaged equations

The use of Reynolds averaging provides a systematic framework for
computing finite statistical moments of turbulent flow variables. In
this approach any variable, φ, is decomposed into a mean, φ, and a
fluctuating part, φ′, as

φ = φ + φ′ (6.6)

An alternative decomposition, favored in variable-density flows, is the
Favre or density-weighted decomposition,

φ = φ̃ + φ′′ with φ̃ =
ρφ

ρ
(6.7)

Although other definitions can also be used [Wilcox, 1998], we de-
fine Reynolds averaging as a statistical ensemble average

φ(X, t) = lim
N→∞

1
N

N

∑
k=1

φ(k)(X, t) (6.8)

which is a discrete analogue of the mathematical expectation, defined
as an integral over a probability density function (PDF),

〈φ(X, t)〉 =
∫ −∞

∞
ψ f (ψ; X, t)dψ (6.9)

Here φ(k) is a single flow realization/experiment, N is the number
of realizations/experiments conducted, while ψ is the sample space
variable of the PDF, f , see e.g. [Pope, 2000]. We take 〈·〉 ≡ (·). It is
straightforward to verify that the following rules apply [Monin and
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Yaglom, 1979, Sagaut, 2005]:

φ + ψ = φ + ψ, (6.10a)

α = α, (6.10b)

αφ = αφ, (6.10c)

φψ = φ ψ, (6.10d)

φ = φ, ˜̃φ = φ̃, (6.10e)

φ′ = 0, φ′′ 6= 0, (6.10f)

ρφ′ 6= 0, ρφ′′ = 0. (6.10g)

Here, ψ and α are a dummy variable and a constant, respectively.
Variable-density flows are traditionally investigated in the Favre-

averaged framework, in which the moment equations take a simpler
form than in the Reynolds-averaged framework, at the price of con-
cealing some effects of the density fluctuations. Since through Favre
averaging the equations for constant-, and variable-density flows ap-
pear the same, most models developed for constant-density turbulence
are routinely applied to variable-density flows without modification.
However, it is important to emphasize that this practice can only be
justified if the flow remains predominantly shear-driven and the den-
sity fluctuations are small, ρ′ � ρ. This is easily seen through

φ̃ =
ρφ

ρ
=

ρφ

ρ
= φ (6.11)

which shows that for ρ = const., Favre averaging reduces to Reynolds
averaging.

Applying Eq. (6.7) to the conservation equations yields [Chassaing,
2002],

• Continuity equation

∂ρ

∂t
+

∂

∂xj
(ρṽj) = 0 (6.12)

• Momentum equation

∂ρṽi
∂t

+
∂

∂xj
(ρṽi ṽj) =

∂

∂xj

(
−pδij + τij − ρṽ′′i v′′j

)
(6.13)

• Energy equation

∂ρẼ
∂t

+
∂

∂xj

(
ρẼṽj

)
=

∂

∂xj

(
− q− ρẼ′′v′′j + viτij − pvj

)
(6.14)

Equations (6.12)-(6.14) only solve for the “average” behavior of the flow.
Compared to DNS, which solves for the instantaneous variables, the
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burden on the computational requirements is now eliminated. On the
other hand, all statistical information that is not contained in the mean
variables now need to be accounted for separately as the mean equa-
tions are unclosed: the terms representing the effects of the fluctua-
tions on the means have to be approximated based on some physi-
cal insight. These are in the form of correlations, such as the Favre

Reynolds stress, ṽ′′i v′′j , and the turbulent energy flux, Ẽ′′v′′j .
The simplest way to approximate these correlations is through the

turbulent viscosity and gradient diffusion hypotheses, see e.g. [Pope,
2000]. According to the turbulent viscosity hypothesis, the effect of
turbulent dissipation is simply an added viscosity whose behavior is
directly analogous to the viscosity in a Newtonian fluid, i.e. the devi-
atoric part of the stress tensor is proportional to the deviatoric rate of
strain:

−(τij + pδij)/ρ = −ν

(
∂vi
∂xj

+
∂vj

∂xi
− 1

3
∂vk
∂xk

δij

)
(6.15)

Analogously, the Reynolds stress is then approximated as

ṽ′′i v′′j −
1
3

ṽ′′k v′′k δij ≈ −νT

(
∂ṽi
∂xj

+
∂ṽj

∂xi
− 1

3
∂ṽk
∂xk

δij

)
(6.16)

where νT is the turbulent viscosity. Related to the turbulent viscosity
hypothesis is the gradient diffusion hypothesis, that approximates the
turbulent energy flux as

Ẽ′′v′′j ≈ −ΓT
∂Ẽ
∂xj

(6.17)

where ΓT is the turbulent heat conductivity. According to Eq. (6.17)

the energy flux Ẽ′′v′′j is aligned with the mean energy gradient.
It is important to grasp the underlying assumptions of the turbu-

lent viscosity and gradient diffusion hypotheses: (1) the correlations
among the velocity fluctuations and velocity-energy can be expressed
as functions of the mean velocity and energy gradients, respectively,
and (2) the proportionality is through a single scalar (νT and ΓT , re-
spectively), i.e. the mean shear and mean energy gradient are aligned
with the velocity covariance matrix and energy flux, respectively.

An advantage of Eqs. (6.16–6.17) is that no modification is required
in a viscous laminar flow solver as these equations merely represent
increased viscous and diffusion terms in the momentum and energy
equations, respectively. The disadvantage is that the underlying as-
sumptions do not even hold in some of the simplest flows [Pope,
2000]. One example is a turbulent pipe flow with increasing (or de-
creasing) cross-section, which subjects the flow to rapid distortion and
as a result the mean shear rate tensor quickly becomes misaligned
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with the Reynolds stress. Another example is variable-density (e.g.
multi-component) flows, where the above assumptions only account
for the fraction of the turbulent kinetic energy that is generated by
mean shear; density-driven turbulence is not accounted for [Livescu
et al., 2009].

In the literature a vast diversity of turbulence models can be found
spanning the spectrum from simple algebraic relations to n-equation
closure models. However, it has to be born in mind, that every RANS
model is calibrated using specific benchmark cases. Therefore, it is
unrealistic to expect that a single RANS model can be successfully
applied in every turbulent flow problem without some model calibra-
tion. Consequently, selecting a RANS model is completely determined
by the problem to be solved.

Spalart-Allmaras Model

This model was developed by Spalart and Allmaras [Spalart and All-
maras, 1994], and it consists of one transport equation for the turbu-
lent viscosity (ν̃). The model is geometry dependent, since it requires
the normal distance from the wall (d) used in the damping functions
needed to control the turbulent viscosity in the near-wall region. Nev-
ertheless, the model boundary conditions are straightforward and easy
to implement.

It is important to include this model since besides its reliability in
complex flows [Spalart, June 2000, 2000], the most popular hybrid
RANS/LES model (DES) is built around this model. (The Hybrid
RANS/LES model will be discussed later in this chapter.) It is im-
portant to mention that DES has gained significant attention due to
its potential for predicting complex unsteady turbulent flows at low
computational cost [Spalart, 2009].

For compressible flow, slightly different versions of the Spalart-
Allmaras (S-A) model have been proposed – see Deck et al. [Deck
et al., 2002] and Simon et al. [Simon et al., 2006]. Here for the sake of
generality the model is presented using the compressible formulation
found in Simon et al. [Simon et al., 2006]. However, the incompressible
formulation can easily be recovered from the compressible form.

The turbulent viscosity transport equation is

∂ρν̃

∂t
+

∂

∂xj

(
ρṽjν̃

)
= ρcb1S̃aν̃− ρcw1 fw

( ν̃

d

)2
+

∂

∂xj

( ρ

σ
(ν+ ν̃)

∂ν̃

∂xj

)
+

ρcb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
(6.18)

where the damping functions and the rest of the coefficients are de-
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fined as

fw = g
[

1 + c6
w3

g6 + c6
w3

]1/6

, fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χ fv1
(6.19)

χ =
ν̃

ν
, g = r + cw2(r6 − r), r =

ν̃

S̃aκ2d2
(6.20)

S̃a = Sr +
ν̃

κ2d2 fv2, Sr =
√

2R̃ijR̃ij, R̃ij =
1
2

( ∂ṽi
∂xj
−

∂ṽj

∂xi

)
(6.21)

Here, d is the normal distance from the wall and the effective turbulent
eddy viscosity is defined as

νt = ν̃ fv1. (6.22)

Model Coefficient Value

cb1 0.1355

cb2 0.622

cv1 7.1
σ 2/3

cw1
cb1
κ2 + 1+cb2

σ

cw2 0.3
cw3 2

κ 0.41

cv2 5

Table 6.1: Spalart-Allmaras model coef-
ficients

The model coefficients are defined in Table 6.1. Modifications to the
model proposed by Spalart have been included to improve the conver-
gence of the model in case of separating/reattaching flows [Deck et al.,
2002]. Here, the S̃ term is computed using the following modified re-
lations

S̃a = Sr f̃v3 +
ν̃

κ2d2 f̃v2 (6.23a)

f̃v2 =
(

1 +
χ

cv2

)−3
(6.23b)

f̃v3 =
(1 + χ fv1)(1− f̃v2)

χ
(6.23c)

The boundary conditions for ν̃ at for solid surfaces and outflow
boundaries are

ν̃ΓDwall = 0, ν̃ΓDin ∼ (3− 5)ν∞, ν̃ΓNout =
∂ν̃

∂xj
n̂j = 0 (6.24)

where ν∞ is the kinematic viscosity at the free stream.
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The source terms are computed at the element center, and require
the following data

• Velocity gradient

• Turbulent variable ν̃

• Normal distance from the wall d

The diffusion terms are computed at the cell faces, here the flow,
turbulence variables, derivatives of the variables, and distance from
the wall are required at the faces.

k-ε Model

The “standard” k− ε model was first presented by Jones and Launder
[Jones and Launder, 1972] and Launder and Spalding [Launder and
Spalding, 1974]. It consists of model equations for the most natural
turbulence quantities, the turbulent kinetic energy (k) and the energy
dissipation rate (ε).

Turbulent kinetic energy

∂ρk
∂t

+
∂

∂xj

(
ρṽjk

)
=

∂

∂xj

(
(µ + µt/σk)

∂k
∂xj

)
+ τ(vi, vj)S̃ij − ρε (6.25)

Energy dissipation rate

∂ρε

∂t
+

∂

∂xj

(
ρṽjε

)
=

∂

∂xj

(
(µ + µt/σε)

∂ε

∂xj

)
+ Cε1

ε

k
τ(vi, vj)S̃ij

− Cε2ρ
ε2

k
− 2

3
(2− Cε1)ρε

∂ṽj

∂xj

(6.26)

where,

S̃ij =
∂ṽi
∂xj

+
∂ṽj

∂xi
(6.27)

τ = 2µtS̃ij (6.28)

and the turbulent viscosity is defined as

µt = ρCµk2/ε (6.29)

The coefficients for the “standard” model are summarized in Table 6.2

A more developed version of the model implementing Renormaliza-
tion Group theory was developed by Yakhot et al. [Yakhot et al., 1992].
In this model, the coefficients are computed theoretically from first
principles providing strong foundations to the approach. The form of
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Model Coefficient Value

Cε1 1.44

Cε2 1.92

Cµ 0.09

σk 1.0
σε 1.3

Table 6.2: Standard k − ε model coeffi-
cients

the equations remains the same as that of the standard k− ε model as
given by Eqs.(6.25) and (6.26) but with modified definition and values
of the coefficients. The governing equations for the transport of k and
ε are repeated here for clarity.

∂ρk
∂t

+
∂

∂xj

(
ρṽjk

)
=

∂

∂xj

(
(µ +

µt

σk
)

∂k
∂xj

)
+ τ(vi, vj)S̃ij − ρε (6.30)

∂ρε

∂t
+

∂

∂xj

(
ρṽjε

)
=

∂

∂xj

(
(µ +

µt

σε
)

∂ε

∂xj

)
+ Cε1

ε

k
τ(vi, vj)S̃ij

− Cε2ρ
ε2

k
− 2

3
(2− Cε1)ρε

∂ṽj

∂xj

(6.31)

where

Cε2 = C̃ε2 +
Cµη3(1− η/η0)

1 + βη3 (6.32)

and
η =

k
ε

√
2S̃ijS̃ij (6.33)

while the rest of the coefficients derived from RNG theory assume
constant values and are summarized in Table 6.3.

Model Constant Value

Cε1 1.42

C̃ε2 1.68

Cε2 Eq.(6.32)
Cµ 0.085

σk 0.72

σε 0.72

β 0.012

η0 4.38

Table 6.3: RNG k− ε model coefficients

It is well known that the k − ε model has many limitations, espe-
cially for wall-bounded flows where high values of eddy viscosity in
the near-wall region are produced. For high Reynolds number flows
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often encountered in many industrial applications, a full resolution us-
ing a fine mesh of the thin viscous sublayer that occurs near a wall may
not be economical. Consequently, a near-wall modeling approach is
usually employed to improve the accuracy of the predictions by incor-
porating the effects of the viscous sub-layer on the transport processes
through the use of semi-empirical “wall functions”. For the current
implementation, the “law-of-the-wall” approach is used to provide
near-wall modeling avoiding the need for highly resolved boundary
layer meshes. This approach relies on known results (law-of-the-wall)
to obtain the wall shear stress. Wall functions are thus used to bridge
the viscosity-dominated thin near-wall region with that of the fully
turbulent regime under the assumption that this can done with only a
small deterioration of results compared to a fully resolved flow.

The law-of-the-wall is a universal velocity profile that wall-bounded
flows (in the absence of pressure gradients) develop when the proper
viscous scales are used to normalize the velocity and length scales.
This law can be stated as follows.

U+ =


y+, for y+ ≤ 11.225

1
κ

ln(Ey+), for y+ > 11.225
(6.34)

where

U+ =
U
uτ

y+ =
yuτ

ν
(6.35)

uτ =

√
τwall

ρ
(6.36)

Here, U is the wall-tangent velocity, ν is the kinematic viscosity, ρ is
density, τwall is the shear stress at the wall, and κ = 0.41, and E = 9.8
are constants.

The standard law-of-the-wall profile is limited in its usage. For ex-
ample, in recirculating flows, the turbulent kinetic energy k becomes
zero at separation and reattachment points where τwall = 0, since,
by definition, uτ is zero. This singular behavior causes the predicted
results to be erroneous. In order to overcome this, the standard law-
of-the-wall is modified based on a new scale for the friction velocity
following the method proposed by Launder and Spalding [Launder
and Spalding, 1974]. The modified friction velocity is given by

u∗ = C1/4
µ

√
k, (6.37)

which does not suffer from a singular behavior at flow reattachment,
separation, and at points of flow impingement. Correspondingly, the



74 computational sciences international

wall distances are re-scaled as follows.

y∗ =
yu∗

ν
=

yC1/4
µ

√
k

ν
(6.38)

The modified law-of-the-wall reduces to the standard law-of-the-
wall under the conditions of uniform wall shear stress and when the
generation and dissipation of turbulent kinetic energy are in balance
(i.e. when the turbulence structure is in equilibrium). Under such
conditions, u∗ ≈ u+ and thus, y∗ ≈ y+.

The wall shear stress for the modified law-of-the-wall is then given
by (Craft et al. [Craft et al., 2002], Albets-Chico et al. [Albets-Chico
et al., 2008])

τwall =


µ

Up

yp
for y∗ ≤ 11.225

κρUpu∗

ln(Eyp∗)
for y∗ > 11.225

(6.39)

where the subscript p denotes the wall element center at which all the
quantities of interest are evaluated.

For free-stream boundary conditions, the following relations are
usually implemented

kΓDin =
3
2

[
V∞

( v′

V∞

)]2
(6.40a)

εΓDin = C3/4
µ

k3/2

l
(6.40b)

εΓDin = Cµρ
k2

∞
µ

(µT
µ

)
(6.40c)

Here, V∞ is the free-stream velocity, v′ is the intensity of the velocity
fluctuations, l is the turbulent integral scale, and µT is the turbulent
viscosity.

The turbulent transport terms require the evaluation of the distance
from the wall, the primary flow and turbulent variables, and their
gradients.

Shear stress transport (SST) k-ω model

Due to the many pathological problems that the different families of
the k− ε model exhibit, especially in wall-bounded flows with adverse
pressure-gradients and flow separation, a new set of two-equation
model was proposed by Wilcox [Wilcox, 1988]. The new model in-
volves transport equations for k and ω, here ω loosely represents the
time scale at which the turbulent kinetic energy (k) is dissipated.
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One of the main advantages of the k − ω over the k − ε model is
that it does not require wall functions or low-Re treatment to allow
its integration to the wall, removing the additional empiricism that
wall functions induce in the modeling strategy. However, it has been
recognized that the predictions of the original k − ω model suffered
from an anomalous dependency on the ω free-stream boundary con-
dition [Menter, 1992]. The anomalous behavior was soon corrected by
Menter[Menter, 1994] and Wilcox [Wilcox, 1998] among others. How-
ever, the version of Menter has been shown more robust removing the
free-stream sensitivity while maintaining the advantages of the origi-
nal k−ω [Wilcox, 1998].

The strategy followed by Menter is to blend the original k− ω and
k− ε (ε is written in terms of ω) models to remove their mutual defi-
ciencies. The k − ω model is used in regions close to the wall where
it does not require wall functions, while the k− ε model is used away
from the wall where it does not significantly suffer the free-stream
boundary condition dependency.

The combination of the models is conducted using blending func-
tions that depend on flow and turbulent variables. Overall, Menter’s
SST model has been shown to be reliable predicting external flows on
adverse and favorable pressure-gradient conditions[Hutton and Ash-
worth, 2005, Menter, 1994]. The original compressible formulation[Menter,
1994] is reproduced here.

The turbulent transport equations for k and ω follow

∂ρk
∂t

+
∂

∂xj

(
ρṽjk

)
=

∂

∂xj

(
ρ(ν + σkνt)

∂k
∂xj

)
+ τ(vi, vj)

∂ṽi
∂xj
− β∗ρkω

(6.41)

∂

∂t
(ρω) +

∂

∂xj
(ρṽjω) =

∂

∂xj

(
ρ(ν + σωνt)

∂ω

∂xj

)
− γ

νt
τ(vi, vj)

∂ṽi
∂xj
− βρω2

+ 2(1− F1)ρσω2
1
ω

∂k
∂xj

∂ω

∂xj

(6.42)

σk σω β γ a1 β∗ κ

g(σk1, σk2) g(σω1, σω2) g(β1, β2) g(γ1, γ2) 0.31 0.09 0.41

σk2 σω2 β2 γ2

1.0 0.856 0.0828 β2/β∗ − σw2κ2/
√

β∗

σk1 σω1 β1 γ1

0.85 0.5 0.075 β1/β∗ − σw1κ2/
√

β∗

Table 6.4: k−ω SST model coefficients

The blending functions are defined as follows
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F1 = tanh(χ4), χ = min
(

max
( √

k
0.09ωy

;
500ν

y2ω

)
;

4ρσω2k
CDy2

)
(6.43a)

CD = max
(

2ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
; 10−20

)
(6.43b)

and

F2 = tanh(η2), η = max
(

2

√
k

0.09ωy
;

500ν

y2ω

)
. (6.44)

The turbulent viscosity is defined as

νt =
a1k

max(a1ω; ΩF2)
(6.45)

Here Ω, F1, and y are the vorticity magnitude, a blending function, and
the wall-normal distance, respectively. The constants for the k−ω SST
model, Table 6.4, are computed by linearly combining, g(a, b) = F1a +
(1− F1)b, the set of constants of the k− ω and k− ε models. The free
stream boundary conditions [Menter, 1994] can be easily implemented
as follows

ωΓDin = (1→ 10)
V∞

L
, νTΓDin = 10−(2→5)ν∞, kΓDin = νt∞ω∞ (6.46)

Here, L is approximately the length of the domain. The wall-boundary
conditions can be implemented by approximating the asymptotic ω

solution [Wilcox, 1988] at the wall with the following relation [Menter,
1994]

ωΓDwall = 10
6ν

β1∆y2
1

, kΓDwall = 0 (6.47)

It is important to mention that roughness effects can be included in
the model through ω wall-boundary conditions[Wilcox, 1988]. Thus, if
we define the the average height of sand-grain roughness elements as
ks, the following boundary conditions must be implemented as long
as k+s < 400

ω =

{
2, 500νw/k2

s , if k2
s < 25

10, 000νw/k2
s , if k2

s ≥ 25
, at y = 0 (6.48)

Additionally, it is possible to account for non-permeable boundary
conditions [Wilcox, 1988], i.e., infiltration through suction or blowing.
This is accomplished through ω boundary condition as follows

ω =
v2

τ

ν

25
v+w (1 + 5v+w )

(6.49)

The sources have to be computed at the cell center and require the
following variables:
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• Gradients of the velocity and turbulent variables

• Flow and turbulent variables

• Normal distance from the wall

For the turbulent diffusion terms, the same variables are required
at the faces.

k-ε-v2- f Model

One of the factors that leads to inaccurate predictions in wall-bounded
flow simulations using the k − ε model is that very close to the wall
the velocity scale controlling the turbulent transport is ṽ2 and not
k [Durbin, 1991].

The so-called ṽ2 − f model was introduced in an attempt to cor-
rect the near-wall problems of the k − ε model without introducing
empirical wall functions[Durbin, 1995, Parneix et al., 1998, Behnia and
Parneix, 1998, Behnia et al., 1999, Lien and Kalitzin, 2001, Kalitzin et al.,
2005]. This model modifies the original k− ε model and includes two
additional equations. The most representative is a transport equation
for the wall-normal stress ṽ2. The model has been improved over the
years, and the most recent version [Kalitzin et al., 2005] is presented
here

Modified k− ε model

∂ρk
∂t

+
∂

∂xj

(
ρṽjk

)
=

∂

∂xj

(
ρ(ν + νt/σk)

∂k
∂xj

)
+ τ(vi, vj)

∂ṽi
∂xj
− ρε (6.50)

∂ρε

∂t
+

∂

∂xj

(
ρṽjε

)
=

∂

∂xj

(
ρ(ν + νt/σε)

∂ε

∂xj

)
+

1
T

(
c∗ε1τ(vi, vj)

∂ṽi
∂xj
− cε2ρε

)
− 2

3
(2− c∗ε1)ρε

∂ṽj

∂xj

(6.51)

Transport equation for the wall-normal ṽ2 scale

∂ρṽ2

∂t
+

∂

∂xj

(
ρṽjṽ2

)
=

∂

∂xj

(
ρ(ν + νt/σk)

∂ṽ2

∂xj

)
+ ρk f − Nρ

ṽ2

k
ε (6.52)

Production equation for ṽ2

f − L2 ∂2 f
∂xj∂xj

= (c f 1 − 1)
2/3− ṽ2/k

T
−

c f 2

ρk
τ(vi, vj)

∂ṽi
∂xj

+ (N − 1)
ṽ2

kT
(6.53)
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Here, the turbulent length scale L is defined as

L = CL max
[

min
[

k3/2

ε
,

k3/2
√

3ṽ2cµS

]
, cη

(ν3

ε

)1/4
]

(6.54)

The turbulent viscosity is computed as follows

νt = cµṽ2T (6.55)

with the time scale T defined as

T = min
[

max
[

k
ε

, 6
√

ν

ε

]
,

αk
√

3ṽ2cµS

]
(6.56)

S =
√

2S̃ijS̃ij, S̃ij =

(
∂ṽi
∂xj

+
∂ṽj

∂xi

)
(6.57)

The wall no-slip boundary conditions are the following [Kalitzin
et al., 2005]

kΓDwall = 0, ṽ2
ΓDwall = 0, εΓDwall →

2νk
y2 , fΓDwall →

4(6− N)ν2ṽ2

εy4

(6.58)
The current model coefficients impose a fΓDwall = 0 boundary condi-

tion at the wall for the production of ṽ2, which promotes the stability
of the model [Kalitzin et al., 2005]. The asymptotic relations for “ε” can
be directly implemented in grid cells located at the viscous sublayer
y+ < 5, similar to the asymptotic relation in the k−ω model [Wilcox,
1988]. Additionally, the value of “ε” can be estimated at the wall by
one order of magnitude of the asymptotic relation value, as suggested
in the k−ω model [Menter, 1994].

εΓDwall = 10
2νk
∆y2

1
(6.59)

Here, ∆y1 is the first grid-cell away from the wall.

cµ c∗ε1 cε2 c f 1 c f 2 CL cη N α

0.22 1.4(1 + 0.05
√

k/ṽ2) 1.9 1.4 0.3 0.23 70 6 0.6

Table 6.5: k − ε − ṽ2 − f model coeffi-
cients

k-ε-ζ- f Model

This model was proposed to enhance the stability of the k-ε-ṽ2- f model
by replacing the ṽ2 equation with a transport equation for the velocity
scale ratio ζ = ṽ2/k, which improves the reliability of the original
ṽ2 − f model [Hanjalic et al., 2004].

Modified k− ε model 2 2 These equations have not been modi-
fied from the original ṽ2− f model, how-
ever they are repeated here for the sake
of completeness.
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∂ρk
∂t

+
∂

∂xj

(
ρṽjk

)
=

∂

∂xj

(
ρ(ν + νt/σk)

∂k
∂xj

)
+ τ(vi, vj)

∂ṽi
∂xj
− ρε (6.60)

∂ρε

∂t
+

∂

∂xj

(
ρṽjε

)
=

∂

∂xj

(
ρ(ν + νt/σε)

∂ε

∂xj

)
+

1
T

(
− c∗ε1τ(vi, vj)

∂ṽi
∂xj
− cε2ρε

)
− 2

3
(2− c∗ε1)ρε

∂ṽj

∂xj

(6.61)

Transport equation for the ratio of the velocity scale ζ

∂ρζ

∂t
+

∂

∂xj

(
ρṽjζ

)
=

∂

∂xj

(
ρ(ν + νt/σζ)

∂ζ

∂xj

)
+ ρ f +

ζ

k
τ(vi, vj)

∂ṽi
∂xj
(6.62)

Production equation of ζ

L2 ∂2 f
∂xj∂xj

− f =
1
T

(
c1 −

c′2
ρε

τ(vi, vj)
∂ṽi
∂xj

)(
ζ − 2

3

)
(6.63)

Here, the turbulent length scale L is defined as

L = CL max
[

min
[

k3/2

ε
,

k1/2
√

6ζcµS

]
, cη

(ν3

ε

)1/4
]

(6.64)

The turbulent viscosity is computed as follows

νt = cµζkT (6.65)

with the time scale T defined as

T = max
[

min
[

k
ε

,
a√

6cµζS

]
, cτ

(ν

ε

)1/2
]

(6.66)

It is important to note that the ζ equation does not include ε, instead
it includes the production of k in the dissipation part. This enhances
the stability of the model since the problems of ε in the near-wall re-
gions are not present in this equation. The boundary conditions for k
and ε are implemented in the same way as in the ṽ2 − f model. The
wall boundary conditions for f and ζ are specified as follows

ζΓDwall = 0, fΓDwall →
−2νζ

y2 , for y→ 0 (6.67)

It is important to implement the v2− f and ζ− f models due to their
potential to fix the anomalies of the k− ε model without introducing
empirical wall-functions. Additionally, these models do not need the
distance from the wall, which is a significant advantage.
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Model Coefficient Value

cµ 0.22

c∗ε1 1.4(1 + 0.012/ζ)

cε2 1.9
c1 0.4
c′2 0.65

σk 1

σε 1.3
σζ 1.2
cτ 6

CL 0.36

cη 85

Table 6.6: k− ε− ζ− f model coefficients

Large-Eddy Simulation

The accuracy of RANS models depends on the ability of the specific
model to represent the effects of turbulent kinetic energy production,
transport, and dissipation. In all RANS models, some of which are
discussed in §6.3, all scales are modeled: the flow behavior must be
captured at the largest scales, the inertial subrange, as well as in the
dissipation range. This is a considerable difficulty as very different
physics (important at the different ranges of scales) must be captured
within the same model equations.

In large eddy simulation (LES) a different approach is taken. The
large scales are exactly represented, while only the dissipative scales
are modeled (approximated) [Sagaut, 2005]. Thus from the spectral
viewpoint of the kinetic energy LES aims to resolve the energy con-
tained in the lower wave numbers, while the energy at high wave-
numbers is modeled.

In Kolmogorov’s view of turbulence, see §6.1, the anisotropy of the
velocity fluctuations (generated at the large scales) is gradually lost in
the inertial subrange as kinetic energy cascades to smaller and smaller
scales. At the smallest dissipative scales the fluctuations are assumed
to be isotropic. The justification of the LES procedure relies heavily on
the this phenomenological picture, whose accuracy has been repeat-
edly validated by both experiments and DNS since Kolmogorov first
proposed his hypotheses in 1941. In LES the large scales are explic-
itly resolved (i.e. without modeling or approximation), while a simple
model, required only for the dissipative scales, are thought to suffice
for most practical purposes. The hope is that the filtered equations ac-
curately represent the important turbulence production mechanisms,
and the overall prediction of the flow is then less sensitive to the model,
which only acts on the small scales, whose sole purpose is dissipation
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of turbulent kinetic energy.
The price-tag of LES is significantly higher than RANS models due

to the increase in resolution requirements to represent a sufficiently
large portion of the kinetic energy. If LES can be afforded for a prob-
lem, it is almost certainly regarded as superior to any RANS model.
However, it is important to appreciate the range of applicability of
LES, where the rate-controlling mechanism can be well-resolved by
the computational grid [Pope, 2004]. Consequently, LES is expected
to perform well in situations where the turbulence is shear-driven
(i.e. mechanically-driven). On the other hand, it is easy to think of
situations where LES is expected to perform poorly. Two examples
are: (1) turbulent combustion, where the rate controlling mechanism,
molecular-mixing-induced chemical reactions, is always at the sub-
grid scale in LES [Pope, 2004]; and (2) variable-density (e.g. multi-
component) turbulence, where a large fraction of the turbulent kinetic
energy may be produced by density-fluctuations (as opposed to shear
and vortex stretching), the flow is non-equilibrium and anisotropic at
both large and small scales, [Livescu et al., 2009]. In these situations
Kolmogorov’s phenomenological picture is not justified and there is
no reason to assume that LES is superior to RANS, unless special care
is taken to accurately resolve all rate-controlling mechanisms.

LES Governing Equations

In LES the flow variables are filtered with a kernel function, G,

φ(X, t) =
∫ +∞

−∞
G(X− r, ∆)φ(r, t)dr (6.68)

where ∆ is the filter width. Filtering results in an additive decomposi-
tion

φ = φ + φ′ (6.69)

The above filtering can be weighted with the fluid density, resulting
in Favre filtering, in analogy with Favre averaging. Applying Favre
filtering to the instantaneous conservation equations results in a set
of Favre filtered equations, which formally look like the ensemble-
averaged equations (6.12–6.14). These equations govern the filtered
flow quantities, which represent the resolved scales. The equations are
unclosed: the effects of the unresolved scales must be accounted for
based on some physical insight.

There are different approaches to LES filtering. Filters can be ex-
plicit or implicit. Explicit filtering explicitly performs Eq. (6.68) on the
computed fluctuating flow field. Depending on the filter function, G,
the decomposition in Eq. (6.69) yields different fields. Implicit filtering
relies on the numerical grid to perform the filtering; the resulting de-
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composition will be different on different grids and different parts of
the computational domain.

The representation of the unresolved scales can also be explicit or
implicit. Explicit models explicitly add model terms to the filtered
continuum equations. An example is to employ the turbulent viscos-
ity hypothesis with the turbulent viscosity computed via Smagorin-
sky’s model, discussed in §6.4, which is analogous to Prandtl’s mix-
ing length model in the Reynolds averaged context. Implicit models
rely on the dissipative properties of the applied numerical method,
resulting in implicit large eddy simulation (ILES), or, if the numeri-
cal treatment ensures monotonicity, monotonically integrated implicit
LES (MILES) [Grinstein et al., 2007].

Though the filtered equations formally look like the Reynolds aver-
aged equations, there is an important difference: Statistical averaging
results in well-defined deterministic quantities (whose rigorous defini-
tions are based on probability theory), while the filtered fields in LES
are random with a fundamental dependence on the artificial (i.e. non-
physical) parameter ∆, the mesh spacing, and the numerical method.
Consequently, LES and its practice raise non-trivial conceptual and
numerical questions [Pope, 2004].

The Smagorinsky Model

The Smagorinsky model serves as a baseline for comparison to other
models. One of the earliest LES models was proposed by Smagorin-
sky [Smagorinsky, 1963], which accounts for the unresolved scales via
the turbulent viscosity hypothesis and computing the turbulent vis-
cosity by a simple dimensional model

µsgs = ρ(Cs∆)2S (6.70)

where ∆ is the length scale and is also assumed to be the filter width.
Practical LES formulations rarely implement explicit filters and only
rely on the mesh as the filter, i.e., the scales filtered are those that the
grid cannot resolve and thus are understood as being filtered. Since
it is virtually impossible to provide a mathematical relation for the
grid filter and thus the filter width, different techniques have been
proposed to compute this length scale. The most common approach is
to relate this scale to the mesh cube root of the mesh volume since the
largest eddies not resolved are in the order of the mesh size. For more
elaborate formulas to compute this length scale on anisotropic grids
see Scotti et al. [Scotti et al., 1997].

∆ = (∆x∆y∆z)1/3 (6.71)



the hydra toolkit computational fluid dynamics theory manual csi-2015-1 rev. a,

may 2017 83

The time scale of the model is then obtained from the magnitude of
the strain rate

S =
√

2S̃ijS̃ij (6.72)

The dimensional approximation is made an equality through the
Smagorinsky constant Cs, whose value is calibrated in isotropic turbu-
lence and is found to be 0.1 ≤ Cs ≤ 0.2.

The Wall-Adapted Large Eddy Model

The wall-adapted large eddy (WALE) model [Nicoud and Ducros,
1999] computes the unresolved-scale dissipation by employing the tur-
bulent viscosity hypothesis (similar to the Smagorinsky model), but
the turbulent viscosity is determined based on both the filtered-scale
shear, Sij, and the square of filtered-scale velocity gradient, gij,

νT = (CW∆)2
(Sd

ijSd
ij)

3/2

(SijSij)5/2 + (Sd
ijSd

ij)
5/4

(6.73)

where CW = 0.5, ∆ = V1/3,

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
g2

kkδij with gij =
∂vi
∂xj

(6.74)

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(6.75)

According to Nicoud & Ducros [Nicoud and Ducros, 1999], compared
to the Smagorinsky model, the WALE model has the following advan-
tages:

• It accounts for both local strain and rotation, which has the potential
to capture the full production of turbulent kinetic energy in shear-
driven flows.

• The turbulent viscosity approaches zero at the wall, consequently
no adjustment of the model constant or damping function is neces-
sary in the vicinity of the wall. Only local information is required
to compute the turbulent viscosity. As a consequence, the model is
well-suited for complex flow geometries.

• The model is invariant to coordinate translation and rotation.

• The turbulent viscosity cannot be negative or infinite.

The Localized Dynamic ksgs-Equation Model

In the localized dynamic ksgs-equation model the unresolved-scale vis-
cosity, νsgs, and unresolved (or subgrid) kinetic energy, ksgs, are mod-
eled using the localized dynamic k-equation model (LDKM), due to



84 computational sciences international

its success predicting complex and fundamental turbulent flows [Kim
and Menon, 1999, Menon and Patel, 2006]

∂ρksgs

∂t
+

∂

∂xj

(
ρṽjksgs

)
=

∂

∂xj

(
ρ(ν/Pr+ νsgs)

∂ksgs

∂xj

)
− τ(vi, vj)

∂ṽi
∂xj
−Cερ

ksgs

∆

3/2

.

(6.76)

νsgs = Cν∆
√

ksgs (6.77)

Here, Cν and Cε are LES coefficients that are obtained dynamically as
a part of the solution using a scale similarity approach. Further details
on the dynamic evaluation can be found in the original references [Kim
and Menon, 1999, Menon and Patel, 2006].

Hybrid RANS/LES

The properties of additive filters, constructed by blending two or more
independent operators in the framework of computational fluid dy-
namics, were formally described by Germano [Germano, 2004] and
Sánchez-Rocha and Menon [Sánchez-Rocha and Menon, 2009]. In par-
ticular, they defined a hybrid RANS/LES filter by blending the RANS
statistical operator and the LES filter operator and went on to derive
the hybrid incompressible Navier-Stokes equations. The resulting dif-
ferential equations depend explicitly on the hybrid variables, on the
statistical operator, and on the filtered quantities, increasing the num-
ber of independent variables. To close the equations, Germano intro-
duced a simple reconstruction procedure, which in theory allows the
calculation of the statistical and the filtered fields from the hybrid vari-
ables. Germano did not conduct any numerical simulation to support
the the new formulation. His work has been continued by extending
the hybrid formulation to compressible flows and conducting numer-
ical calculations to prove the importance of the exact formulation.

Hybrid RANS/LES Operators

Having defined the RANS and the LES operators, a hybrid additive
operator and its Favre representation can be constructed by combining
Eq. (6.8) and (6.68) with a blending function

φ(X, t) = F φ̇(X, t) + (1−F )φ̈(X, t) (6.78)

φ̃(X, t) =
ρφ

ρ
. (6.79)

In order to present the hybrid formulation without ambiguity, a slight
change in notation is required. The RANS operators are identified us-
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ing an over dot, (φ̇) and ( ˙̃φ), whereas the LES operators are identified
using two over dots (φ̈) and ( ¨̃φ).

Here, F is a normalized function that in general, depends on time
and space. It is defined as F :

{
(‖ X ‖, t) ∈ [0, ∞) → F (X, t) ∈

[0, 1]
}

. Furthermore, it must have continuous derivatives to at least
second order in space and first order in time, i.e., F (X, t) is a C2(xi)

and C1(t) function (this will be evident when the hybrid equations are
derived). Under this hybrid definition, Eq. (6.78) recovers RANS and
LES variables when F = 1 and F = 0, respectively. Similar to RANS
and LES, the unsteady variable (φ) can be constructed using the hybrid
variables with the standard decomposition

φ = φ + φ′, φ = φ̃ + φ′′. (6.80)

Here, the hybrid fluctuations can be easily shown to be related to the
RANS and LES fluctuations as

φ′ = Fφ′̇ + (1−F )φ′̈ (6.81)

and

φ′′ = F ρ̇

ρ
φ′̇′ + (1−F ) ρ̈

ρ
φ′̈′. (6.82)

It can also be shown that, in general, the hybrid filter Eq. (6.78) does
not commute with differentiation and does not satisfy all the Reynolds
rules of averaging regardless of the properties of the constitutive oper-
ators. Thus,

∂φ

∂xi
=

∂φ

∂xi
+

∂F
∂xi

(φ̈− φ̇) (6.83a)

∂φ

∂t
=

∂φ

∂t
+

∂F
∂t

(φ̈− φ̇) (6.83b)

φ + ψ = φ + ψ, (6.84a)

α = α, (6.84b)

αφ = αφ, (6.84c)

φψ 6= φ ψ, (6.84d)

φ 6= φ, ˜̃φ 6= φ̃, (6.84e)

φ′ 6= 0, φ′′ 6= 0, (6.84f)

ρφ′ 6= 0, ρφ′′ 6= 0, (6.84g)

since

φ = (2−F )F φ̇ + (1−F )2 ¨̈
φ. (6.85)
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Here, α and ψ are a constant and an unsteady function similar to φ,
respectively. Equations (6.83) and (6.85) indicate that the hybrid fil-
ter does not commute with differentiation, and the application of the
hybrid operator on the hybrid variable does not recover the same hy-
brid variable, i.e., φ 6= φ. These are general properties of this hybrid
operator and do not depend on the constitutive operators.

The last relevant property of the hybrid operator is related to its
ability to reconstruct the RANS and the LES variables if the hybrid
field is known. Germano [Germano, 2004] showed that by applying
Eq. (6.8) in Eq. (6.78), the RANS variable can be calculated directly
from the hybrid variable as

φ̇ = φ̇. (6.86)

Once the RANS field is known, the LES variable can be obtained by
substituting Eq. (6.86) in Eq. (6.78)

φ̈ =
φ−F φ̇

1−F . (6.87)

To extend Germano’s original incompressible formulation to com-
pressible flow, the governing equations have to be derived using the
generalized second-order central moments [Germano, 1992]. This gives
a better representation of the unclosed terms that appears when the
operator is applied in the non linear terms. This way, the final equa-
tions are invariant with respect to the operators employed. For the
compressible formulation, the generalized second-order central mo-
ments are defined as

τ(a, b) = ρ(ãb− ãb̃), χ(a, b) = ab− ãb, ζ(a, b) = ab− ãb̃ (6.88)

Here, a and b are dummy variables, and τ, χ, and ζ represent, the
compressible operators required by the RANS, the LES, and the hy-
brid formulations respectively. It is important to highlight that τ and
ζ are symmetric operators while χ is not. Additionally, both χ and ζ

operators are required to account for the additional nonlinear terms
present in the energy equation, and therefore they do not appear in
Germano’s [Germano, 2004] incompressible formulation. By substitut-
ing Eqs. (6.78) and (6.79) in Eq. (6.88), the dependency of the hybrid
central moments on the RANS and LES variables can be shown to be

τ(a, b) =F τ̇(a, b) + (1−F )τ̈(a, b)

+ ρ
[
F
(

1−F ρ̇

ρ

) ρ̇

ρ
˙̃a ˙̃b−F (1−F ) ρ̇ ρ̈

ρ2
˙̃a ¨̃b
]

+ ρ
[
(1−F )

(
1− (1−F ) ρ̈

ρ

) ρ̈

ρ
¨̃a ¨̃b−F (1−F ) ρ̇ ρ̈

ρ2
¨̃a ˙̃b
] (6.89)
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χ(a, b) =F χ̇(a, b) + (1−F )χ̈(a, b)

+
[
F
(

1−F ρ̇

ρ

)
˙̃aḃ−F (1−F ) ρ̇

ρ
˙̃ab̈
]

+
[
(1−F )

(
1− (1−F ) ρ̈

ρ

)
¨̃ab̈−F (1−F ) ρ̈

ρ
¨̃aḃ
] (6.90)

ζ(a, b) =F ζ̇(a, b) + (1−F )ζ̈(a, b)

+
[
F
(

1−F ρ̇
2

ρ2

)
˙̃a ˙̃b−F (1−F ) ρ̇ ρ̈

ρ2
˙̃a ¨̃b
]

+
[
(1−F )

(
1− (1−F ) ρ̈

2

ρ2

)
¨̃a ¨̃b−F (1−F ) ρ̇ ρ̈

ρ2
¨̃a ˙̃b
] (6.91)

It is trivial to show that these equations recover RANS and LES central
moments when F = 1 and F = 0, respectively. Using the above
operator, the hybrid Reynolds stress tensor is constructed by operating
Eq. (6.89) on vi and vj

τ(vi, vj) =F ρ̇( ˙̃vivj − ˙̃vi ˙̃vj) + (1−F )ρ̈( ¨̃vivj − ¨̃vi ¨̃vj)

+ ρ
[
F
(

1−F ρ̇

ρ

) ρ̇

ρ
˙̃vi ˙̃vj −F (1−F )

ρ̇ ρ̈

ρ2
˙̃vi ¨̃vj

]
+ ρ
[
(1−F )

(
1− (1−F ) ρ̈

ρ

) ρ̈

ρ
¨̃vi ¨̃vj −F (1−F )

ρ̇ ρ̈

ρ2
¨̃vi ˙̃vj

]
.

(6.92)

It is clear that the compressible generic central moments in their ex-
plicit form include density ratios induced by the Favre formulation
that do not appear in the incompressible formulation of Germano [Ger-
mano, 2004]. However, it is easy to show, and it will be shown, that for
incompressible flow, Eq. (6.92) reduces to the incompressible hybrid
Reynolds stress tensor derived by Germano.

Compressible Hybrid RANS/LES Navier-Stokes Equations

Having established the required hybrid operators, Eqs. (6.78)-(6.91),
they are applied to the compressible Navier-Stokes equations Eqs. (1.4)-
(1.6).

∂ρ

∂t
+

∂

∂xj
(ρṽj) =

∂F
∂xj

[
ρ̇ ˙̃vj − ρ̈ ¨̃vj

]
+

∂F
∂t
[
ρ̇− ρ̈

]
(6.93)
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∂ρṽi
∂t

+
∂

∂xj
(ρṽi ṽj + pδij − τ̃ij + τ(vi, vj)) =

∂F
∂xj

[
ρ̇ ˙̃vi ˙̃vj − ρ̈ ¨̃vi ¨̃vj + τ̇(vi, vj)− τ̈(vi, vj)

+ ( ṗ− p̈)δij − ( ˙̃τij − ¨̃τij)
]

− ∂

∂xj

{
∂F
∂xj

(µ̇ ˙̃vi − µ̈ ¨̃vi) +
∂F
∂xi

(µ̇ ˙̃vj − µ̈ ¨̃vj)

− 2
3

∂F
∂xk

(µ̇ ˙̃vk − µ̈ ¨̃vk)δij

}
+

∂F
∂t
[
ρ̇ ˙̃vi − ρ̈ ¨̃vi

]

(6.94)

∂ρẼ
∂t

+
∂

∂xj

(
ρẼṽj + pṽj − κ

∂T̃
∂xj
− τ̃ijṽi + τ(E, vj)

+ χ(vj, p)− χ
( ∂T

∂xj
, κ
)
− ζ(τij, vi)

)
=

∂F
∂xj

{
ρ̇ ˙̃vj

˙̃E− ρ̈ ¨̃vj
¨̃E + τ̇(E, vj)− τ̈(E, vj)

+ ˙̃vj ṗ− ¨̃vj p̈ + χ̇(vj, p)− χ̈(vj, p)

−
(

κ̇
∂ ˙̃T
∂xj
− κ̈

∂ ¨̃T
∂xj

+ χ̇
( ∂T

∂xj
, κ
)
− χ̈

( ∂T
∂xj

, κ
))

−
(

˙̃τij ˙̃vi − ¨̃τij ¨̃vi + ζ̇(τij, vi)− ζ̈(τij, vi)
)}

+
∂F
∂t
[
ρ̇ ˙̃E− ρ̈ ¨̃E

]

(6.95)

with the pressure, shear stress tensor, and total energy defined as

p = ρRT̃ (6.96)

τ̃ij = 2µ
(
S̃ij −

1
3

S̃kkδij
)
, S̃ij =

1
2

( ∂ṽi
∂xj

+
∂ṽj

∂xi

)
, (6.97a)

˙̃τij = 2µ̇
( ˙̃Sij −

1
3

˙̃Skkδij
)
, ˙̃Sij =

1
2

( ∂ ˙̃vi
∂xj

+
∂ ˙̃vj

∂xi

)
, (6.97b)

¨̃τij = 2µ̈
( ¨̃Sij −

1
3

¨̃Skkδij
)
, ¨̃Sij =

1
2

( ∂ ¨̃vi
∂xj

+
∂ ¨̃vj

∂xi

)
(6.97c)

ρẼ = ρCvT̃ +
ρ

2
ṽi ṽi +

1
2

τ(vi, vi) (6.98a)

ρ̇ ˙̃E = ρ̇Cv
˙̃T +

ρ̇

2
˙̃vi ˙̃vi +

1
2

τ̇(vi, vi) (6.98b)

ρ̈ ¨̃E = ρ̈Cv
¨̃T +

ρ̈

2
¨̃vi ¨̃vi +

1
2

τ̈(vi, vi) (6.98c)
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As expected, the application of the hybrid operator to the Navier-
Stokes equations results in unclosed terms that need to be modeled.
Furthermore, the hybrid operator introduces new terms into the final
equations. These terms are

σρ =
∂F
∂xj

[
ρ̇ ˙̃vj − ρ̈ ¨̃vj

]
+

∂F
∂t
[
ρ̇− ρ̈

]
(6.99)

σρvi =
∂F
∂xj

[
ρ̇ ˙̃vi ˙̃vj − ρ̈ ¨̃vi ¨̃vj + τ̇(vi, vj)− τ̈(vi, vj)

+ ( ṗ− p̈)δij − ( ˙̃τij − ¨̃τij)
]

− ∂

∂xj

{
∂F
∂xj

(µ̇ ˙̃vi − µ̈ ¨̃vi) +
∂F
∂xi

(µ̇ ˙̃vj − µ̈ ¨̃vj)

− 2
3

∂F
∂xk

(µ̇ ˙̃vk − µ̈ ¨̃vk)δij

}
+

∂F
∂t
[
ρ̇ ˙̃vi − ρ̈ ¨̃vi

]
(6.100)

σρE =
∂F
∂xj

{
ρ̇ ˙̃vj

˙̃E− ρ̈ ¨̃vj
¨̃E + τ̇(E, vj)− τ̈(E, vj)

+ ˙̃vj ṗ− ¨̃vj p̈ + χ̇(vj, p)− χ̈(vj, p)

−
(

κ̇
∂ ˙̃T
∂xj
− κ̈

∂ ¨̃T
∂xj

+ χ̇
( ∂T

∂xj
, κ
)
− χ̈

( ∂T
∂xj

, κ
))

−
(

˙̃τij ˙̃vi − ¨̃τij ¨̃vi + ζ̇(τij, vi)− ζ̈(τij, vi)
)}

+
∂F
∂t
[
ρ̇ ˙̃E− ρ̈ ¨̃E

]

(6.101)

and

στ(a,b) =ρ
[
F
(

1−F ρ̇

ρ

) ρ̇

ρ
˙̃a ˙̃b−F (1−F ) ρ̇ ρ̈

ρ2
˙̃a ¨̃b
]

+ ρ
[
(1−F )

(
1− (1−F ) ρ̈

ρ

) ρ̈

ρ
¨̃a ¨̃b−F (1−F ) ρ̇ ρ̈

ρ2
¨̃a ˙̃b
] (6.102)

σχ(a,b) =
[
F
(

1−F ρ̇

ρ

)
˙̃aḃ−F (1−F ) ρ̇

ρ
˙̃ab̈
]

+
[
(1−F )

(
1− (1−F ) ρ̈

ρ

)
¨̃ab̈−F (1−F ) ρ̈

ρ
¨̃aḃ
] (6.103)

σζ(a,b) =
[
F
(

1−F ρ̇
2

ρ2

)
˙̃a ˙̃b−F (1−F ) ρ̇ ρ̈

ρ2
˙̃a ¨̃b
]

+
[
(1−F )

(
1− (1−F ) ρ̈

2

ρ2

)
¨̃a ¨̃b−F (1−F ) ρ̇ ρ̈

ρ2
¨̃a ˙̃b
] (6.104)
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Equations (6.99)-(6.101) represent turbulent terms that contribute to
the governing equations during the RANS to LES transition (RTLT)
zone. They occur due to the lack of commutation between hybrid
operator and differentiation. Similarly, the hybrid terms (Eqs. (6.102)-
(6.104)) are also only relevant in the RTLT zone, originate due to the
non-linearity of the hybrid central moments, and consist of products
between RANS and LES variables. In the following, Eqs. (6.99)-(6.104)
will be referred to as “hybrid contributions” or “hybrid terms” indis-
tinctly. Note that these terms become infinite if the blending function
implemented in the hybrid operator is discontinuous. Therefore, a
well defined hybrid formulation requires at least a C2(xi) and C1(t)
“F” function.

The hybrid contributions provide the mechanism that keeps the bal-
ance between modeled and resolved scales in the RTLT zone, where
neither RANS nor LES completely models nor resolves the turbulence
of the flow. In order to demonstrate this point, let us further analyze
the hybrid contributions. To simplify the analysis, Eqs. (6.88) are sub-
stituted in Eqs. (6.99)-(6.101), and additionally it is assumed that the
turbulence is only weakly affected by compressibility effects, which
is a valid assumption provided that the fluctuating Mach number is
Ma′ < 0.3 [Spina et al., 1994]. Therefore, all density ratios appearing
in Eqs. (6.102)-(6.104) can be assumed as unity for this discussion. It is
also assumed that the blending function F is continuous and a func-
tion of space only, with bounded first and second order derivatives.
Under these conditions Eqs. (6.99)-(6.104) reduce to

σρ =
∂F
∂xj

[
ρ̇ ˙̃vj − ρ̈ ¨̃vj

]
(6.105)

σρvi =
∂F
∂xj

[
˙ρvivj − ¨ρvivj + ( ṗ− p̈)δij − ( ˙̃τij − ¨̃τij)

]
− ∂

∂xj

{
∂F
∂xj

(µ̇ ˙̃vi − µ̈ ¨̃vi) +
∂F
∂xi

(µ̇ ˙̃vj − µ̈ ¨̃vj)−
2
3

∂F
∂xk

(µ̇ ˙̃vk − µ̈ ¨̃vk)δij

}
(6.106)

σρE =
∂F
∂xj

{
˙ρvjE− ¨ρvjE + ˙vj p− ¨vj p−

( ˙
κ

∂T
∂xj
−

¨
κ

∂T
∂xj

)
−
(

˙̃τijvi − ¨̃τijvi

)}
(6.107)

στ(a,b) =
F (1−F )

ρ

(
ρ̇a− ρ̈a

)(
ρ̇b− ρ̈b

)
(6.108)

σχ(a,b) =
F (1−F )

ρ

(
ρ̇a− ρ̈a

)(
ḃ− b̈

)
(6.109)
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σζ(a,b) =
F (1−F )

ρ2

(
ρ̇a− ρ̈a

)(
ρ̇b− ρ̈b

)
(6.110)

Equations (6.105)-(6.110) indicate that the hybrid contributions are
directly proportional to differences between RANS and LES variables.
In order to extract additional information, the RANS and the LES dif-
ferences can be approximated with the instantaneous turbulent fluc-

tuation φ′̇ = φ − φ̇ = C(φ̈ − φ̇), since φ̈ → φ for ∆ → 0 and
˙

φ′̇ =

C(
˙̈
φ − φ̇) = 0. Here, φ is the instantaneous variable and C is an or-

der one coefficient. Therefore, by substituting φ′̇ = C(φ̈ − φ̇) in Eqs.
(6.105)-(6.110), and assuming C = 1 the hybrid contributions can be
expressed as

σρ = −∂F
∂xj

(ρvj)′̇ (6.111)

σρvi =−
∂F
∂xj

[
(ρvivj)′̇ + p′̇δij − τij

′̇
]

+
∂

∂xj

{
∂F
∂xj

(µvi)′̇ +
∂F
∂xi

(µvj)′̇ −
2
3

∂F
∂xk

(µvk)′̇δij

} (6.112)

σρE =− ∂F
∂xj

{
(ρvjE)′̇ + (vj p)′̇ −

(
κ

∂T
∂xj

)′̇
− (τijvi)′̇

}
(6.113)

στ(a,b) =
F (1−F )

ρ
(ρa)′̇(ρb)′̇ (6.114)

σχ(a,b) =
F (1−F )

ρ
(ρa)′̇(b)′̇ (6.115)

σζ(a,b) =
F (1−F )

ρ2 (ρa)′̇(ρb)′̇ (6.116)

Equations (6.111)-(6.116) demonstrate that the hybrid contributions
represent physical turbulent scales that are not directly accounted for
by either RANS or LES. Therefore, if Eqs. (6.99)-(6.104) cannot be re-
constructed from the hybrid field, they have to be either modeled or
prescribed. Here, it is important to stress that Eqs. (6.111)-(6.116) are
just an approximation of the hybrid terms and their only purpose is
to illustrate the physical meaning of the hybrid terms. Therefore, Eqs.
(6.111)-(6.116) should not be used to compute or model the hybrid
terms. Here Eqs. (6.99)-(6.104) have to be used instead. It will be
shown that the hybrid contribution plays an important role preserving
equilibrium in the transition from RANS to LES, and in compensat-
ing for the turbulence that RANS does not model and LES does not
resolve.
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Here, it is important to mention, that current hybrid RANS/LES ap-
proach assumes that the transition from RANS to LES is only obtained
through the turbulent model equations. However, some of the exist-
ing hybrid RANS/LES models can be obtained by simplifying Eqs.
(6.89)-(6.91) and (6.93)-(6.95).

Speziale VLES model: This approach scales the Reynolds stress tensor
to bridge DNS with RANS τs

ij = ατR
ij . Here the scaling function

α = [1− exp(−β∆/η)]n depends on the grid resolution (∆), the Kol-
mogorov length scale (η), and model coefficients β and n [Speziale,
1998]. This approach can be recovered if the LES operator in Eqs.
(6.93)-(6.92) is replaced by the identity operator φ̈ = φ and the
HT are neglected. Under these conditions Eq. (6.92) simplifies to
τ(vi, vj) = F τ̇(vi, vj), since the central moments for the identity
operator are zero τ̈(a, b) = 0. Hence, the blending function can
be directly related with the scaling factor F = α. Thus, what is
left is to provide a closure for α for which different methods have
been proposed [Batten et al., 2004, Liu and Shih, 2006, Delanghe
et al., 2005, Girimaji, 2006]. The equations indicate that the model
transitions from RANS to DNS. However, it is not clear how this
approach could formally fit LES in between, as stated originally by
Speziale [Speziale, 1998].

Zonal RANS/LES approach: In this approach the RANS and LES gov-
erning equations are usually solved in different flow domains with
a discontinuous model transition [Piomelli and Balaras, 2002, Geor-
giadis et al., 2003, Hamba, 2003, Tucker and Davidson, 2004, Schluter
et al., 2004, Zhong and Tucker, 2004, Davidson and Dahlström, 2005,
Temmerman et al., 2005, Davidson and Billson, 2006, Hamba, 2006].
This approach can be recovered from Eqs. (6.93)-(6.92) by neglecting
the HT and implementing a discontinuous function in F .

Blended hybrid RANS/LES approaches: In this approach the RANS and
LES model equations are usually combined using a blending func-
tion [Baggett, 1998, Xiao et al., 2003, Baurle et al., 2003, Xiao et al.,
2004, Fan et al., 2004, Kawai and Fujii, 2005, Sánchez-Rocha et al.,
2006], inducing a RTLT region. This approach is obtained from
Eqs. (6.93)-(6.92) by neglecting the hybrid terms and implement-
ing a continuous blending function τ(vi, vj) = F τ̇(vi, vj) + (1 −
F )τ̈(vi, vj). In particular, if the same closure equations are used for
both RANS and LES central moments, the hybrid formulation re-
duces to a blending of turbulence viscosities τ(vi, vj)− 2

3 δijτ(vk, vk) =

2[Fµrans + (1−F )µsgs](S̃ij − 1
3 S̃kk), which is one of the most com-

mon forms of hybrid models. In fact, the Detached Eddy Simulation
approach [Spalart et al., 1997, 2006] can be presented in this form
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where µDES = Fµrans + (1−F )µsgs, with the transition from RANS
to LES built in the model equation of µDES.

Time Dependent Hybrid RANS/LES Formulation

Although it will not be pursued any further numerically in this work,
it is worth mentioning the case when the hybridization is conducted
over time, i.e., F = f (t), which is relevant for LES simulations that are
conducted from an initial steady RANS field.

∂ρ

∂t
+

∂

∂xj
(ρṽj) =

∂F
∂t
[
ρ̇− ρ̈

]
= −∂F

∂t
(ρ)′̇ (6.117)

∂ρṽi
∂t

+
∂

∂xj
(ρṽi ṽj + pδij − τ̃ij + τ(vi, vj)) =

∂F
∂t
[
ρ̇ ˙̃vi − ρ̈ ¨̃vi

]
= −∂F

∂t
(ρvi)′̇

(6.118)

∂ρẼ
∂t

+
∂

∂xj

(
ρẼṽj + pṽj − κ

∂T̃
∂xj
− τ̃ijṽi + τ(E, vj)

+ χ(vj, p)− χ
( ∂T

∂xj
, κ
)
− ζ(τij, vi)

)
=

∂F
∂t
[
ρ̇ ˙̃E− ρ̈ ¨̃E

]
= −∂F

∂t
(ρE)′̇

(6.119)

Equations (6.117)-(6.119) indicate that the transition from a steady
RANS to an unsteady LES simulation is promoted by unsteady sources
that help to trigger instabilities in the flow that will develop into re-
solved turbulence. Here, it is only speculated that the inclusion of
these terms would help to reduce the time it takes for a steady field
(used for initialization or used for forced studies) to develop realistic
unsteady turbulence.

Note that for time-dependent blending functions, Eq. (6.86) will not
be valid if the RANS operator represents a time-averaged operator,
since in this case the blending function will not commute with the
time-averaging operator Ḟφ 6= F φ̇. Nevertheless, even in this case,
Eqs. (6.117)-(6.119) are still valid.

Incompressible Hybrid Navier-Stokes Equations

Although the incompressible hybrid RANS/LES Navier-Stokes equa-
tions for an additive hybrid operator were first presented by Ger-
mano [Germano, 2004], these equations are repeated and expanded
here to highlight the hybrid contributions and to establish our new
notation. The incompressible formulation is derived from the com-
pressible hybrid approach by assuming incompressibility and by elim-
inating the energy and the state equations.

∂vj

∂xj
=

∂F
∂xj

[
v̇j − v̈j

]
(6.120)
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∂vi
∂t

+ vj
∂vi
∂xj

+
∂

∂xj
(p/ρδij − τij/ρ + τ(vi, vj)/ρ) =

∂F
∂xj

[
v̇i v̇j − v̈i v̈j + τ̇(vi, vj)/ρ− τ̈(vi, vj)/ρ

+ ( ṗ− p̈)/ρδij − (τ̇ij − τ̈ij)/ρ
]

− ν
∂

∂xj

{
∂F
∂xj

(v̇i − v̈i) +
∂F
∂xi

(v̇j − v̈j)

}
+

∂F
∂t
[
v̇i − v̈i

]

(6.121)

τij = µ
( ∂vi

∂xj
+

∂vj

∂xi

)
, τ̇ij = µ

( ∂v̇i
∂xj

+
∂v̇j

∂xi

)
, τ̈ij = µ

( ∂v̈i
∂xj

+
∂v̈j

∂xi

)
.

(6.122)

τ̇(a, b) = ρ(ȧb− ȧḃ) (6.123)

τ̈(a, b) = ρ(äb− äb̈) (6.124)

τ(a, b) = ρ(ab− ab) (6.125)

Equations (6.120), (6.121), and (6.125) represent the incompressible
hybrid Navier-Stokes equations and the hybrid second order central
moment. The explicit expression for the hybrid central moment is
obtained by substituting Eq. (6.78) in Eq. (6.125)

τ(a, b) =F τ̇(a, b) + (1−F )τ̈(a, b) + ρF (1−F )(ȧ− ä)(ḃ− b̈)
(6.126)

and by operating Eq. (6.126) in vi and vj, the hybrid Reynolds stress
tensor is directly obtained as

τ(vi, vj) = ρ
[
F ( ˙vivj − v̇i v̇j) + (1−F )( ¨vivj − v̈i v̈j)

+F (1−F )(v̇i − v̈i)(v̇j − v̈j)
]
.

(6.127)

The momentum equation derived here is slightly different from Ger-
mano’s original derivation since the definition for the viscous stress
tensor (6.122) is maintained, while Germano applied continuity to sim-
plify the momentum equation. Nevertheless, it can be shown that both
equations are consistent.

Finally, by substituting Eqs. (6.123) and (6.124) in Eq. (6.121), and
including the differences between RANS and LES variables with the
turbulence fluctuations (φ′̇ = φ− φ̇ = C(φ̈− φ̇), with C = 1), it can be
shown that the hybrid contributions take the following form

σρ = −∂F
∂xj

vj
′̇ (6.128)
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σρvi =−
∂F
∂xj

[
(vivj)′̇ + p′̇/ρδij − τij

′̇/ρ
]

+ ν
∂

∂xj

{
∂F
∂xj

vi
′̇ +

∂F
∂xi

vj
′̇
}
− ∂F

∂t
vi
′̇

(6.129)

στ(vi ,vj)
= ρF (1−F )vi

′̇vj
′̇ (6.130)

Similar to the compressible formulation, the incompressible hybrid
contributions represent turbulence scales and need to be included.

RANS-SST/LES-LDKM Hybrid Model

In order to solve the governing equations, the generic hybrid central
moments have to be defined using RANS and LES equations. For
RANS, the closure model implemented at present uses a standard
eddy viscosity and a gradient diffusion assumption.

τ̇(vk, vk) = 2ρk (6.131)

τ̇(vi, vj) = −2ρνt(S̃ij −
1
3

S̃kkδij) +
2
3

ρkδij (6.132)

χ̇
( ∂T

∂xj
, κ
)
+ ζ̇(τij, vi)− τ̇(E, vj)− χ̇(vj, p) =

ρCpνt

PrT

∂T̃
∂xj

(6.133)

+ ρ(ν + νtσ
∗)

∂k
∂xj
− τ̇(vi, vj)ṽi.

(6.134)

Here, k is the turbulent kinetic energy (TKE), ν is the kinematic
viscosity, νt is the turbulent eddy viscosity, Cp is the heat capacity
at constant pressure, and σ∗ and PrT are constants set to 1/2 and 1,
respectively [Wilcox, 1988]. Similarly, the same assumptions are used
to construct the LES closures defined as

τ̈(vk, vk) = 2ρkksgs (6.135)

τ̈(vi, vj) = −2ρνsgs(S̃ij −
1
3

S̃kkδij) +
2
3

ρksgsδij (6.136)

χ̈
( ∂T

∂xj
, κ
)
+ ζ̈(τij, vi)− τ̈(E, vj)− χ̈(vj, p) =

ρCpνsgs

Prt

∂T̃
∂xj

+ ρ
νsgs

Prt

∂Ẽ
∂xj

(6.137)

+
νsgs

Prt

∂ p̃
∂xj
− τ̈(vi, vj)ṽi.

(6.138)
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Here, ksgs is the subgrid kinetic energy, νsgs is the subgrid eddy vis-
cosity, and Prt is a coefficient assumed unity [Menon and Patel, 2006].
Finally, model equations for νt, k, νsgs, and ksgs have to be defined to
close the system of equations.

In this work, RANS and LES turbulence models are coupled in the
hybrid formulation by blending equivalent RANS and LES models.
Here, the two-equation k− ω SST model [Menter, 1994] and the one-
equation localized dynamic ksgs (LDKM) LES model [Menon and Pa-
tel, 2006] were selected to compute νt, k, νsgs, and ksgs, since both
methods have transport equations for the kinetic energy of the tur-
bulence (k for RANS and ksgs for LES), which are used to design the
hybrid model equation. The k−ω SST model is selected due to its well
documented success predicting complex flows [Hutton and Ashworth,
2005, Menter, 1994, Wilcox, 1998, 1988].

An equation for the hybrid turbulent kinetic energy (K = Fk+(1−
F )ksgs) can be derived formally by merging RANS and LES trans-
port equations following the same procedure used to derive the hy-
brid Navier-Stokes equations. However, this approach would yield an
equation with extra terms that cannot be readily computed, and unlike
the hybrid Navier-Stokes equations, it is not possible to demonstrate
any physical significance for all the additional terms derived in the hy-
brid model equation. The formal combination of two model equations
does not guarantee that the physics of the flow is modeled any bet-
ter. Here, a model equation that identically recovers the RANS k and
LES ksgs equations is proposed in such a way that its structure resem-
bles Eqs. (6.93)-(6.95) without the hybrid contributions. This model
equation is

∂ρK
∂t

+
∂

∂xj

(
ρṽjK− KTj

)
= KS (6.139)

where

KTj = F
(

ρ(ν + σkνt)
∂K
∂xj

)
+ (1−F )

(
ρ(

ν

Pr
+ νsgs)

∂K
∂xj

)
(6.140a)

KS = F
(
− τ̇(vi, vj)

∂ṽi
∂xj
− β∗ρKω

)
+ (1−F )

(
− τ̈(vi, vj)

∂ṽi
∂xj
− Cερ

K
∆

3/2)
.

(6.140b)

Equation (6.139) is the model equation for the hybrid turbulent ki-
netic energy (K). The model equation is constructed by directly blend-
ing the source and the transport terms of the k − ω SST “k” and the
LES “ksgs” equations. An additional modification is required in Eqs.
(6.132) and (6.136) to eliminate their explicit dependence on k and ksgs.
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Both turbulence variables are substituted by K so that

τ̇(vi, vj) = −2ρνt(S̃ij −
1
3

S̃kkδij) +
2
3

ρKδij (6.141)

τ̈(vi, vj) = −2ρνsgs(S̃ij −
1
3

S̃kkδij) +
2
3

ρKδij (6.142)

This additional modification does not alter the original RANS-SST
and LES-LDKM equations, which are identically recovered when F =

1 and F = 0, respectively. The RANS-SST model requires an addi-
tional equation for the specific energy dissipation rate “ω” defined by

∂

∂t
(ρω) +

∂

∂xj
(ρṽjω) = − γ

νt
τ̇(vi, vj)

∂ṽi
∂xj
− βρω2 +

∂

∂xj

[
ρ(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1
ω

∂K
∂xj

∂ω

∂xj

(6.143)

F1 = tanh(χ4), χ = min
(

max
( √K

0.09ωy
;

500ν

y2ω

)
;

4ρσω2K
CDy2

)
(6.144a)

CD = max
(

2ρσω2
1
ω

∂K
∂xj

∂ω

∂xj
; 10−20

)
(6.144b)

Here, Ω, F1, and y are the vorticity magnitude, a blending function,
and the wall-normal distance, respectively. Here, it is stressed that the
equation for ω is not explicitly hybridized since there is no equivalent
equation in the LES model implemented here. The constants for the
RANS-SST model, here represented as ψ, are computed from two sets
of constants ψ1 and ψ2 as ψ = F1ψ1 + (1− F1)ψ2. Here, the values of
these two sets were previously defined. Finally, the RANS and the LES
eddy viscosities are defined by

νt =
a1K

max(a1ω; ΩF2)
(6.145)

and
νsgs = Cν∆

√
K (6.146)

where

F2 = tanh(η2), η = max
(

2

√
K

0.09ωy
;

500ν

y2ω

)
. (6.147)

This hybrid RANS/LES turbulent model has been successfully applied
to simulate complex unsteady flow separation [Sánchez-Rocha et al.,
2006, Lynch and Smith, 2008].
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Detached Eddy Simulation (DES)

Turbulent viscosity transport equation:

∂ρ̇ν̃

∂t
+

∂

∂xj

(
ρ̇ ˙̃vjν̃

)
= ρ̇cb1

˙̃Saν̃− ρ̇cw1 fw

(
ν̃

d̃

)2

+
∂

∂xj

( ρ̇

σ
(ν + ν̃)

∂ν̃

∂xj

)
+

ρ̇cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj

(6.148)

Here, the damping functions and the rest of the coefficients are defined
as

fw = g
[

1 + c6
w3

g6 + c6
w3

]1/6

, fv1 =
χ3

χ3 + c3
v1

, fv2 = 1− χ

1 + χ fv1
(6.149)

χ =
ν̃

ν
, g = r + cw2(r6 − r), r =

ν̃
˙̃Saκ2d̃2

(6.150)

˙̃Sa = Sr +
ν̃

κ2d̃2
fv2, Sr =

√
2 ˙̃Rij

˙̃Rij,
˙̃Rij =

1
2

( ∂ ˙̃vi
∂xj
−

∂ ˙̃vj

∂xi

)
(6.151)

Here, d is the distance from the wall and the effective turbulent viscos-
ity is defined as

d̃ = min(dRANS, dLES) (6.152)

where

dLES = Cdes∆ (6.153)

∆ = max(∆x, ∆y, ∆z) (6.154)

and dRANS = d is the distance from the wall.
The turbulent eddy viscosity is

νt = ν̃ fv1. (6.155)

cb1 cb2 cv1 σ cw1 cw2 cw3 κ cv2 Cdes

0.1355 0.622 7.1 2/3
cb1
κ2 + 1+cb2

σ 0.3 2 0.41 5 0.65

Table 6.7: DES model coefficients

The model coefficients are defined in Table 6.7. Modifications to
the model proposed by Spalart have been included to improve the
convergence of the model in cases of flow reattachment [Deck et al.,
2002]. Here, the S̃ term is computed using the following modified
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relations

˙̃Sa = Sr f̃v3 +
ν̃

κ2d2 f̃v2 (6.156a)

f̃v2 =
(

1 +
χ

cv2

)−3
(6.156b)

f̃v3 =
(1 + χ fv1)(1− f̃v2)

χ
(6.156c)

Derived Statistics

This section presents some of the tools that are available to analyze tur-
bulent flow data. There are two primary objectives for analyzing data
from a large-eddy simulation. The first is to develop an understanding
of the flow field in question through the use of these tools. This may
lead to Engineering design changes or implementation of flow con-
trols to modify the flow. The second objective is to reveal pathologies
caused by the numerical integration of the flow equations and con-
comitant closure models under realistic conditions. It is hoped that a
clear understanding of these pathologies may lead to better simulation
models.

In order to probe LES data, statistical analysis tools are needed that
allow the distillation of the tremendous volume of data produced from
simulation (or experiment) down to a few manageable quantities of in-
terest that may be directly compared to experimental data. The nature
of turbulent flows does not allow for a predictive solution in the strict
sense of the word. One must therefore be content with the prediction
of its statistics.

Some of the most important statistical quantities of interest (and the
most physically revealing) correspond to the first moments of the flow
variables, i.e., the mean values. Moments of flow variables such as
the velocity are routinely measured in experiments and form the basis
of the Reynolds Averaged Navier-Stokes (RANS) solution approach
for turbulent flows. There are several techniques used to obtain these
moments from raw data, e.g., LES data. Before proceeding with an
overview of the derived statistics, several definitions are required.

Reynolds Averaged Statistics

Reynolds time averages, ensemble averages, homogeneous spatial av-
erages, and probability densities are four techniques commonly used
to determine mean quantities (or moments) of a turbulent flow. Reynolds
averaging is used to derive the time invariant mean quantities of a sta-
tionary flow as a function of position. Ensemble averaging is suited
for transient flows and describes the mean values as a function of both
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space and elapsed time. Spatial averaging describes the spatial invari-
ance of mean values in a homogeneous flow that may or may not be
stationary.

The fourth and most powerful technique for determining mean val-
ues is through the use of probability densities of stationary processes.
If the probability density of the flow variables is known for the entire
domain of interest, then all of the moments of the flow variables can
be obtained from the probability density. In practice, this probability
density is difficult to determine and contains more information than is
desired, therefore it will not be considered further here. The remain-
der of this section will concentrate on the definition and use of the
Reynolds, spatial, and ensemble averaging.

A stationary flow is one in which mean values are independent
of the initial time from which the means are determined. Stationary
flows are also referred to as statistically steady. In other words, the
mean values do not change with time. Consider the temporally and
spatially varying quantity φ(xi, t), its Reynolds time average is

< φ(xi) >= lim
T→∞

1
T

∫ t0+T

t0

φ(xi, t′)dt′ (6.157)

where t0 denotes an arbitrary starting time for the integration.
An example of a stationary flow is a jet flow issuing from the nozzle

on a pipe at high Reynolds number with a fixed mass flow rate that
is controlled by a valve. After some time, the flow settles down and a
stationary flow is achieved. A probe designed to measure the velocity
field placed at some location within the jet would measure a fluctu-
ating velocity that if examined closely would seem to be oscillating
randomly about a steady mean.

In contrast, for non-stationary flows, a time-invariant mean cannot
be defined, i.e., the mean is time-dependent. For this type of flow,
ensemble averaging may be used where flow data is accumulated over
a number of trials, i.e., repeating the experiment until the mean values
are independent of the number of experiments performed. At this
point the mean values are said to have converged to a statistically
reliable value. A formal definition of an ensemble average for a generic
variable φ(xi, t) is

< φ(xi, τ) >E= lim
NE→∞

1
NE

NE

∑
n=1

φ(xi, t = τ) (6.158)

where τ = t− t0 is the elapsed time from the start of the experiment,
t0, and NE is the number of experiments.

An example of a non-stationary flow may be seen in the turbulent
flow around a moving body, e.g., a turning submarine. In this sit-
uation, the flow can never become stationary. In contrast, the flow
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around a stationary bluff body would become stationary after an ini-
tial start-up transient.

A homogeneous flow is one in which the statistical properties of
the flow do not vary with spatial location. All the mean values are
independent of location and can be described by a single value at an
instant in time, instead of a value at each spatial location. The mean
values of homogeneous flows are determined from a volume integral
such as

φ(t) = lim
V→∞

1
V

∫
V

φ(xi, t)dV (6.159)

where V is the volume of the domain and dV = dx1dx2dx3. If in ad-
dition, the flow is isotropic then the properties of the flow do not vary
with direction. In other words, the flow is invariant to a rotation in co-
ordinate system. Homogeneous flow is an idealization because bound-
ary conditions such as no-slip/no-penetration surfaces introduce inho-
mogeneities into the flow.

The best example of homogeneous flow is the flow behind a mesh
in a wind tunnel, i.e., so-called “screen” turbulence. In the central re-
gion away from the tunnel walls, the flow approaches homogeneous
and isotropic conditions. If we assume the flow to be incompressible,
then the turbulence is entirely known from the velocity and pressure
fields at an instant in time, which we refer to as a realization. If the
flow is homogeneous, the mean values can be obtained from a single
realization of the flow instead of Reynolds time averaging over many
realizations. The two techniques for measuring mean values are ex-
pected to be equivalent in a homogeneous flow.

Mean and Fluctuating Decomposition

All of the statistical measures of turbulent flows presented in this sec-
tion are based upon the Reynolds average for stationary flows. With
the definition of the Reynolds average given above, any variable can
be decomposed into its mean and fluctuating component,

φ(xi, t) =< φ(xi) > +φ′(xi, t) (6.160)

and will obey the following Reynolds-averaging rules,

< φ′ > = 0 (6.161)

<< φ >> = < φ > (6.162)

< φψ > = < φ >< ψ > + < φ′ψ′ > (6.163)

< φ′ < ψ >> = < ψ′ < φ >>= 0. (6.164)

The time average is approximated by the discrete summation,

< φ(xi) >= lim
N→∞

∑N
n=1 φn(xi, tn)∆tn

∑N
n=1 ∆tn

(6.165)
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where ∆tn is the time step increment for the nth time integration step
and tn = ∑n

m=1 ∆tm is the accumulated time. Let φ represent a scalar
quantity and let vi, (i = 1, 2, 3) represent the ith Cartesian component
of the instantaneous velocity. The variance of a scalar is

σ2 =< (φ− < φ >)2 >=< φ2 > − < φ >2 (6.166)

where the root mean square (r.m.s.) is σ. Similarly, the Reynolds stress
tensor is

Rij =< v′iv
′
j >=< vivj > − < vi >< vj > (6.167)

and the turbulent kinetic energy is one half of the trace of the Reynolds
stress tensor

q′ =
1
2
< v′kv′k >=

1
2
(< vkvk > − < vk >< vk >) (6.168)

where repeated indices imply summation. The turbulent scalar flux
vector is

< φ′v′i >=< φvi > − < φ >< vi > . (6.169)

The triple correlation between three independent scalars is defined as

< φ′ψ′λ′ > = < φψλ > − < φ >< ψ >< λ > (6.170)

−(< φ >< ψ′λ′ > + < ψ >< φ′λ′ > + < λ >< φ′ψ′ >).

Correlations of this type appear in second order moment closure mod-
els such as the Reynolds stress turbulence model. Higher order corre-
lations can be defined in a similar manner.

Higher Order Statistics

Higher order moments of velocity, velocity differences, and velocity
derivatives have been used to analyze isotropic turbulence. The skew-
ness of velocities is defined as

S0i =

〈
v3

i
〉〈

v2
i
〉3/2 (6.171)

and the flatness factor of velocities is

F0i =

〈
v4

i
〉〈

v2
i
〉2 . (6.172)

The skewness is a measure of the asymmetry of the fluctuations; S0i >

0 are predominately positive, and S0i < 0 are predominately negative.
The flatness is a relative measure of remotely occurring, symmetric
spiking fluctuations.
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The skewness of velocity derivatives is defined as

S1i =

〈(
∂vi
∂xi

)3
〉

〈(
∂vi
∂xi

)2
〉3/2 (6.173)

and the flatness factor of velocity derivatives

F1i =

〈(
∂vi
∂xi

)4
〉

〈(
∂vi
∂xi

)2
〉2 (6.174)

where there is no summation of indices.
Skewness and flatness of velocity differences have been also mea-

sured 3, 3 G. K. Batchelor. The Theory of Homoge-
neous Turbulence. Cambridge University
Press, 1953S∆i(r) =

〈
(∆vi)

3〉
〈(∆vi)2〉3/2 (6.175)

and the flatness factor is

F∆i(r) =
〈
(∆vi)

4〉
〈(∆vi)2〉2

(6.176)

where ∆vi = vi(xi + ri, t)− vi(xi, t) and ri = xi + r.
For homogeneous and isotropic turbulence, the velocity fluctuations

have a Gaussian probability distribution. Since this distribution is
symmetric, all odd moments are zero. The nonzero moment higher
than the variance is the flatness that obtains a value of 3.0. The deriva-
tive skewness is ∼ −0.3−−0.5 and the derivative flatness is ∼ 3− 4 4. 4 G. K. Batchelor. The Theory of Homoge-

neous Turbulence. Cambridge University
Press, 1953

Velocity derivative skewness and flatness are dominated by the smaller
scales in the flow so these statistics provide a good measure of how
well the numerical scheme is resolving the smaller scales of the flow.

Anisotropic Stress Tensor

An intrinsic distinction exists between isotropic and anisotropic Reynolds
stresses. The isotropic stress is 2

3 q′δij, and the deviatoric anisotropic
part is

aij =< v′iv
′
j > −

2
3

q′δij. (6.177)

The normalized anisotropy tensor is defined as bij =
aij
2q′ . It is readily

seen that akk = 0, and any anisotropy is seen by non-zero values of the
off-diagonal terms.





Part II

Numerical Methods





7 Unstructured Grid Topology

This chapter outlines some of the principal aspects of the algorithms
used to treat unstructured grids in the Hydra toolkit. Central to the
compressible and incompressible flow solvers, is the use of so-called
“edge-based” algorithms.

The use of edge-based algorithms for advection (both cell-centered
and node-centered) rely on topological grid constructs such as vertices,
edges, primal and dual-grids. Figure 7.1 illustrates a primal grid and
the associated centroidal and median dual grids. In the primal grid,
each cell consists of an ordered set of vertices connected by cell edges
or faces. Each vertex of the dual grid (both centroidal and median dual
grids may be considered here) is associated with a cell of the primal
mesh.

Edges, are in general lines that connect a pair of vertices. In the
primal grids of interest here, the edges will be straight lines. However,
the edges of the dual grids need not be straight lines as shown in
Fig. 7.2. Edges of the dual grid intersect primal edges. In general,
vertices, edges and faces of both the primal and dual grids are ordered
independently. Of course, if a structured mesh is considered, there are
certain obvious simplifications to the description of the grid topology
that can be exploited.

Most unstructured grid descriptions rely on the identification of el-
ements or cells and the nodal coordinates connected to each cell. As
demonstrated in Christon and Spelce [Christon and Spelce, 1992] the
computational cost to extract unique edges on an arbitrary unstruc-
tured grid scales as CNel log(Nel) where Nel is the number of elements
in the mesh.

For our purposes, a carefully designed and implemented edge ex-
traction algorithm is used to construct the edge-based data structures
used in the Hydra toolkit. The concepts for the edge extraction algo-
rithm are based on the algorithms developed in QACINA[Christon,
2007], but extended to treat arbitrary topology meshes comprised of
multiple element types. These algorithms scale approximately as Nel log(Nel),
but with a constant that is bounded and small, 2.5× 10−7 ≤ C ≤ 10−6

based on timings on a 1.7 GHz Pentium-4 processor. Figure 7.3 shows
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Primal Grid

Centroidal Dual Grid

Median Dual Grid

Vertex

Cell Edge (or face)

Cell

Figure 7.1: Primal, median dual, and
centroidal dual grids.

Primal Grid (Mesh)

Median Grid

Figure 7.2: Primal and median dual
grids.
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the CPU time vs. number of elements in the grid for a variety of
two and three-dimensional unstructured grids. From this result, it is
clear that the topology-based edge extraction easily scales to O(106)

elements in serial, i.e., on a per-processor basis. Further, the range
of computing hardware shown in Fig. 7.3 serves to indicate the ex-
pected performance for the current desktop. The algorithm extensions
required for parallel implementation are trivial as the extraction calcu-
lation is “embarrassingly parallel”.
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Figure 7.3: CPU time vs. number ele-
ments for the edge extraction on a vari-
ety of unstructured grids. (UNSVIZ is a
stand-alone test-harness for parallel ren-
dering that was originally used to study
edge-extraction algorithms using a 200
MHz Pentium-Pro processor as a base-
line.)

In order to verify the edge extraction algorithms used in the frame-
work, Euler’s formula was used. For a polygonal surface, the number
of edges may be computed directly in terms of the number of nodes
Nnp and the number of elements Nel in the grid as

Nedge = Nel + Nnp − 1. (7.1)

For a domain that contains holes, the number of edges is computed in
terms of the number of nodes, elements and holes Nhole as

Nedge = Nel + Nnp + Nhole − 1. (7.2)

The results presented in Table 7.1 verify that the edge extraction algo-
rithm is functioning correctly – at least in two-dimensions.
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Int. Ext.
Mesh Nnp Nel Nhole Edges Edges Nedge

517 460 0 864 112 976

2892 2800 1 5508 184 5692

70306 69636 2 136773 1894 139667

82 130 2 177 36 213

368 665 1 962 71 1033

402 688 1 1010 80 90

Table 7.1: Topology test for edge extrac-
tion algorithm.



8 Discontinuous Galerkin/Finite Volume Method

This chapter outlines the basic Discontinuous Galerkin/Finite Volume
formulation using a simple scalar conservation law as a prototype. The
issues associated with gradient estimation are outlined, and a series of
convergence results presented to demonstrate the basic behavior of the
underlying numerics.

Scalar Conservation Law Formulation

A prototypical scalar conservation law is chosen to illustrate the Dis-
continuous Galerkin method,

∂u
∂t

+∇ · f(u, c) = 0 in Ω× (0, T) (8.1)

where f(u, c) = cu is the physical flux, c is the advective velocity,
and u is the dependent variable. The model PDE is subject to initial
conditions

u(x, 0) = u0(x) ∀ x ∈ Ω (8.2)

and boundary conditions

u = û on ΓD (8.3)

and
(f · n) = (f̂ · n) on ΓN (8.4)

where Γ = ΓD ∪ ΓN . Here, û and f̂ are prescribed values of the con-
served variable and the corresponding flux on the boundary.

The discontinuous Galerkin formulation proceeds by first discretiz-
ing in space, e.g., with quadrilaterals, triangles, or some combination.
At each time t ∈ [0, T], an approximate solution uh is sought in the
finite element space of discontinuous functions Wh. In order to deter-
mine the approximate solution, the weak formulation is required, i.e.,
on each element∫

Ωe
wh

{
∂uh

∂t
+∇ · f(uh, c)

}
= 0 ∀wh ∈Wh (8.5)
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where Ωe is the element volume.
Proceeding with integration-by-parts, i.e., applying the divergence

theorem to weaken the spatial derivatives yields

d
dt

∫
Ωe

whuh +
∮

Γe
whf(uh, c) · n−

∫
Ωe
∇wh · f(uh, c) · n = 0 ∀wh ∈Wh

(8.6)
If the test function, wh is chosen to be a piecewise-constant function

over each element, then a finite volume formulation is recovered. For
our purposes, we chose the piecewise-constant test functions which
yields

d
dt

∫
Ωe

1 uh +
∮

Γe
1 f(uh, c) · n = 0 (8.7)

The cell-averaged conserved variable is defined as

u =
1

Ωe

∫
Ωe

uh (8.8)

Using this definition, the formulation yields a system of ordinary dif-
ferential equations (ODEs)

du
dt

+
1

Ωe

∮
Γe

f(uh, c) · n = 0 (8.9)

Remark 1 In order to provide compatibility with modern PLIC-based volume-
tracking algorithms that are based on a finite volume formalism, we choose
piecewise-constant test functions for the compressible and incompressible flow
solvers in Hydra. However, it should be noted that this choice does not re-
strict the current methods or software from being extended to include higher
order (higher than linear) reconstruction techniques or the incorporation of
higher-order test functions. In addition, this choice makes it very simple to
share a common discretization for both the compressible and incompressible
flow solvers.

Integrating Eq. (8.9) over a time-step,

∫ t+∆t

t

du
dt

+
1

Ωe

∫ t+∆t

t

∮
Γe

f(uh, c) · n = 0 (8.10)

which permits the definition of a time-averaged flux or numerical flux,

F · n ≈ 1
∆t

∫ t+∆t

t
f(uh, c) · n (8.11)

Thus, using the numerical flux, the formulation yields

∫ t+∆t

t

du
dt

+
1

Ωe

∮
Γe
F (uh, c) · n = 0 (8.12)
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Flux Functions

There are many ways to formulate the numerical approximation to the
physical flux. One is to use an approximate Riemann solver. For the
current discussion, we use the local Lax-Freidrichs flux which is an
approximate, two-point, monotone, Lipschitz flux.

At a given dual-edge (or face of an element), i, the numerical flux is
defined as

F i · ni =
1
2
{
(fi(u−i ) + fi(u+

i )) · ni − a(u+
i − u−i )

}
(8.13)

where a is the maximal eigenvalue of the flux Jacobian and the (nor-
mal) flux Jacobian is (

∂fi
∂u

)
· ni = ci · ni (8.14)

Thus, for the scalar advection problem, a is simply the normal velocity
at a cell face. In contrast to continuous Galerkin methods, the flux on
dual-edges is continuous rather than the conserved variables.

In Figure 8.1 the − state is always located on the inside of the cell
face, and the + state is based on the adjacent cell and is on the posi-
tive normal side of the cell. In terms of dual-edges, Hydra associates
the two elements (edge vertices), the ownership of the outward facing
normal, the normal, and face area in its dual-edge data structure.

in

+

−

−

−

+

+

Figure 8.1: Cell face locations for recon-
structed +/− values used in the numer-
ical flux evaluation.

Element-Centered Gradient Approximation

The numerical flux evaluation relies on multi-dimensional reconstruc-
tion of the field variables at the ± locations of each cell as shown
in Figure 8.1. The polynomial reconstruction at cell faces from cell-
averaged values may be categorized as constant, linear, quadratic, etc.
Constant reconstruction corresponds to a donor-cell method for advec-
tion. While future efforts may rely on higher-order reconstruction, e.g.,
quadratic. Currently, the Hydra toolkit uses only linear reconstruction.

The reconstruction of the field at face i of a given cell, is computed
using a limited gradient as

u−i = u + φ∇cu · ffiri (8.15)

with the + values reconstructed from the adjacent cell and its limited
gradient and cell-averaged data. Here, ∇c(·) indicates a spatially cen-
tered gradient with φ ∈ [0, 1] the slope limiter. Figure 8.2 shows the
reconstruction at a typical cell face.

in

e
i= −x x

i
δr

+

+
+

−

−
−

Figure 8.2: Cell face locations for recon-
structed +/− values used in the numer-
ical flux evaluation.

As pointed out by Barth and Jesperson[Barth and Jesperson, 1989],
there are several constraints on the gradient calculation that are re-
quired to achieve a desired level of accuracy. The first corresponds to
linear consistency and requires that the the gradient calculation∇cu be
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exact when u has a linear variation, i.e., linear consistency. The second
constraint requires that ∇c exist for arbitrary mesh configurations.

The Green-Gauss Gradient

The Green-Gauss approximation of the gradient relies on a boundary
integral around a closed control volume, i.e.,

∇cu =
1

Ωe

∫
Γe

u∗dΓ (8.16)

where Ωe is the cell volume and

u∗ =
1
2
(u+ + u−) (8.17)

Alternatively, u∗ may be computed using linear interpolation as

u∗ =
u+δr+ + u−δr−

δr+ + δr−
(8.18)

where δr± = ‖ffir±‖.
In either case, Eq. (8.16) fails to produce an exact gradient when

the field is linear, e.g., when u(x, y) = a + bx + cy (see Barth and
Jesperson [Barth and Jesperson, 1989], Marvripilis [Mavripilis, 2003]).
Barth and Jesperson [Barth and Jesperson, 1989] suggest an alterna-
tive method for computing ∇cu that satisfies linear consistency and is
suitable for unstructured grids. However, it also requires a somewhat
more complicated path integral. This approach was used by Barth
and Fredrickson [Barth and Frederickson, 1990] for higher-order re-
construction methods, albeit at the cost of a slightly non-local gradient
computation. This approach is not implemented in the Hydra toolkit.

The Least-Squares Gradient

An alternative least-squares gradient estimation procedure that satis-
fies linear consistency and may be used for both node-centered and
cell-centered finite volume methods was proposed by Barth [Barth,
1993] in 1993. The least-squares procedure satisfies linear consistency
and is independent of the mesh topology.

The least-squares procedure attempts to find discontinuous recon-
struction polynomials that are close to their C0 counterparts for each
vertex of the grid. Figure 8.3 shows the minimum data required for
the least-squares reconstruction on a patch of triangles.

The least-squares reconstruction procedure is equivalent to solving
the following non-square problem using the vertex data surrounding
each cell. Using the convention that ∆xic = xi − xc and ∆uic = ui − uc
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Figure 8.3: Data used for least-squares
reconstruction.

for each of the surrounding cells, the minimization problem becomes ∆x1c ∆y1c

∆x2c ∆y2c

∆x3c ∆y3c

{ ∂u
∂x
∂u
∂y

}
=


∆u1c

∆u2c

∆u3c

 . (8.19)

In order to actually solve the for the least-squares gradients, the
normal equations are formed as follows. First, Eq. (8.19) can be written
as [

L1 L2

]
{∇cu} = {f} (8.20)

Then, forming the normal equations,[
L11 L12

L21 L22

]{
∂u
∂x
∂u
∂y

}
=

{
L1 · f
L2 · f

}
(8.21)

where Lij = Li · Lj and fi = Li · f.
Alternatively, this may be written two dimensions as[

∑ ∆x2
ic ∑ ∆xic∆yic

∑ ∆xic∆yic ∑ ∆y2
ic

]{
∂u
∂x
∂u
∂y

}
=

{
∑ ∆xic∆uic

∑ ∆yic∆uic

}
(8.22)

where the sum is over all edges connected to the cell vertex at (xc, yc).
The resulting system of equations [L]{∇cu} = { f } may be solved
at each vertex independently, i.e., in a “cell-by-cell” or “element-by-
element” fashion and requires only local neighbor information. In
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three dimensions, the normal equations become ∑ ∆x2
ic ∑ ∆xic∆yic ∑ ∆xic∆zic

∑ ∆xic∆yic ∑ ∆y2
ic ∑ ∆yic∆zic

∑ ∆xic∆zic ∑ ∆yic∆zic ∑ ∆z2
ic




∂u
∂x
∂u
∂y
∂u
∂z

 =


∑ ∆xic∆uic

∑ ∆yic∆uic

∑ ∆zic∆uic


(8.23)

In order to test that this procedure yields gradients that are exact
for a linear field, assume that the exact solution, in the form of a grid
function, has a form u(x, y) = a + bx + cy. By evaluating the function
at grid points, e.g., uc = a + bxc + yc, and substituting into Eq. (8.22),
the following right-hand-result is obtained{

f1

f2

}
=

{
∑ ∆xic(∆xic + ∆yic)

∑ ∆yic(∆xic + ∆yic)

}
(8.24)

i.e., ∆uic = ∆xic + ∆yic.
Cramer’s rule may used to solve the symmetric 2 × 2 system for

∇cu, e.g.,

∂u
∂x

=
1

det(L)

∣∣∣∣∣ f1 L12

f2 L22

∣∣∣∣∣ (8.25)

Expanding this result in terms of the vertex differences, the x-gradient
becomes

∂u
∂x

=
∑ ∆x2

ic ∑ ∆y2
ic − (∑ ∆xic∆yic)

2

∑ ∆x2
ic ∑ ∆y2

ic − (∑ ∆xic∆yic)2
= 1 (8.26)

That is, the computed x-gradient of u is exact when the field is linear.
Similar results are obtained for ∂u/∂y, and for ∂u/∂z in three dimen-
sions.

In order to compute gradients at boundaries, ghost data as shown
in Figure 8.3 is introduced. For the cell-centered data, finite element
like homogeneous natural boundary conditions are implemented by
default. This corresponds to prescribing ∂u/∂n = 0 at the boundary
where n is the outward-pointing boundary normal. This approach
is taken for the compressible, incompressible, and cell-centered heat-
conduction solvers in the Hydra toolkit providing the default finite-
element homogeneous natural or “do-nothing” conditions.

With the gradient approximation in hand, attention is turned to
the limiting procedure. Consideration of monotonicity suggests that
the reconstructed field from Eq. (8.15) should not exceed the mini-
mum/maximum of the neighboring vertex values. As a starting point,
we follow the limiting procedure introduced by Barth and Jesperson
[Barth and Jesperson, 1989]. The limiting procedure proceeds as fol-
lows.

1. For a given vertex, compute the local minimum/maximum based
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on local neighbors as

umin = min(u, ui) i = 1, ..., Nedge

umax = max(u, ui) i = 1, ..., Nedge
(8.27)

2. Calculate the minimum/maximum field differences,

δumin = umin − u
δumax = umax − u

(8.28)

3. For each local edge, compute the slope limiter,

φi =


min(1, δumax/δui) i f δui > 0
min(1, δumin/δui) i f δui < 0
1 i f δui = 0

(8.29)

where δui = ffiri · ∇u.

4. Compute the minimum value for the limiter over all local edges of
the current cell.

φ = min(φi) i = 1, ..., Nedge (8.30)

The Weighted Least-Squares Gradient

The unweighted least-squares gradient approximation relies on solv-
ing the normal equations for which the determinant corresponds to
a difference in quantities that scales as O(∆x4). The consequence is
ill-conditioning that can result in inaccurate gradients. An alternative
is to use a weighting scheme that results in an O(1) determinant and
avoids ill-conditioning of the normal equations. One example of this
type of weighted least-squares may be found in Anderson and Bon-
haus[Anderson and Bonhaus, 1994]. Mavriplis[Mavripilis, 2003] sug-
gests a simpler version of weighted least squares which we summarize
here.

Using Eq. (8.23) as a starting, the weighting suggested by Mavriplis
is introduced as ∑ w2

ic∆x2
ic ∑ w2

ic∆xic∆yic ∑ w2
ic∆xic∆zic

∑ w2
ic∆xic∆yic ∑ w2

ic∆y2
ic ∑ w2

ic∆yic∆zic

∑ w2
ic∆xic∆zic ∑ w2

ic∆yic∆zic ∑ w2
ic∆z2

ic




∂u
∂x
∂u
∂y
∂u
∂z

 =


∑ w2

ic∆xic∆uic

∑ w2
ic∆yic∆uic

∑ w2
ic∆zic∆uic


(8.31)

where
wic =

1√
∆x2

ic + ∆y2
ic + ∆z2

ic

. (8.32)

There are a number of other approaches for computing least-squares
gradient approximations, see for example the work by Rider and Kothe
[Rider and Kothe, 2002] and Kothe, et al. [Kothe et al., 2002]. The
inverse-distance weighted least-squares procedure is currently used in
the Hydra Toolkit.
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Phase-speed and Artificial Diffusivity

The numerical performance of the numerical flux may be understood
in terms of the phase error and artificial diffusivity introduced by the
underlying discretization. A detailed discussion of the analysis tech-
niques used to assess numerical performance may be found in the
work by Christon, et al. [Christon et al., 2004, Voth et al., 2004, Chris-
ton et al., 2003].

For the Hydra toolkit, we consider the performance of the semi-
discrete method described above. In this context, the numerical phase
speed is simply the ratio of the apparent discrete advective speed and
the true speed, c̃/c. The diffusive behavior is captured in terms of
an inverse Peclet number where for a purely non-diffusive method,
1/Peart = 0.

Figure 8.4 shows the non-dimensional phase speed and artificial
diffusivity as functions of the non-dimensional wave number up to
the grid Nyquist limit. The values that the associated limiters may
achieve based on the input data are shown in the inset. There are four
cases that correspond to various forms of data that may be present on
the grid.

1. φm−1 = φm = 0: This situation corresponds to 2∆x signals on the
grid where the slope limiters are fully activated. In this case, the
phase speed corresponds to that associated with a central-differences
discretization with first-order upwinding at the Nyquist grid limit.
In other words, the method attempts to completely damp these sig-
nals to avoid oscillatory solutions.

2. φm−1 = 0, φm = 1: Here, a change in slope occurs, with smooth-
data to the right. In this case, the the artificial diffusivity is re-
duced to 50% of the first-order upwind case, and the phase-speed
increased at long wavelengths. This has the effect of controlling
oscillations and avoiding signal separation due to dispersive effects.

3. φm−1 = 1, φm = 0: Here, a change in slope occurs again, with
smooth-data to the right. In this case, the the artificial diffusivity
is reduced to 50% of the first-order upwind case, and the phase-
speed decreased at long wavelengths. Again, this has the controls
oscillations and avoids signal separation due to dispersive effects.

4. φm−1 = 1, φm = 1: Here, smooth data is present, and there is no
limiting performed. In this case, the artificial diffusivity is zero and
corresponds to the limit of pure advection, and the phase-speed is
that associated with a second-order central-difference approxima-
tion of the gradient. This corresponds to the case when all signals
are adequately resolved on the grid.
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The advection methods used in the Hydra toolkit are non-linear,
monotonicity-preserving, and follow the general behavior described
here. For smooth data, the methods are non-dissipative, and deliver
second-order spatial convergence. For the limit of oscillatory data at
the 2∆x Nyquist limit, the methods attempt to damp only the short
wavelength data while preserving the resolved long wavelength data
on the grid.

FOU/CD

FOU

1 0, 1m mφ φ− = =

1 1, 0m mφ φ− = =

1 1, 1m mφ φ− = =

1 0, 0m mφ φ− = =

m-2 m-1 m m+1

0.00

0.20

0.40

0.60

0.80

1.00

1/Peart

0.0 0.2 0.4 0.6 0.8 1.0

2∆x/λ

0.0

0.5

1.0

1.5

c~/c

0.0 0.2 0.4 0.6 0.8 1.0

1 0, 0m mφ φ− = =
1 0, 1m mφ φ− = =
1 1, 0m mφ φ− = =
1 1, 1m mφ φ− = =

1 0, 0m mφ φ− = =

1 0, 1m mφ φ− = =
1 1, 0m mφ φ− = =

Figure 8.4: Phase speed and artifi-
cial diffusivity as a function of non-
dimensional wave number.

Convergence Studies

There are various metrics available that may be used to assess the accu-
racy of a solution method or, alternatively, to verify its correctness. For
our purposes, we are interested in extracting the leading order terms
in the discretization error.

The discretization error is comprised of both spatial and temporal
errors. It is defined as the difference between the computed and exact
solutions,

ei = ue
i − ui, (8.33)

where the exact grid function ue
i is defined in terms of the exact field

solution ue
i as

ue
i =

1
Ωi

∫
Ωi

ue
i dΩ. (8.34)

It can be shown that the discretization error is proportional to the
truncation error which permits the discretization error to be written
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in a one-dimensional form as

ej = αhp + β∆tq + H.O.T., (8.35)

where p corresponds to the order of the spatial discretization, q to the
order of the temporal discretization, and H.O.T. indicates higher-order
terms.

It is typical to use reconstruction methods that are matched with
the time integrator, i.e., p = q. In addition, the time step and mesh
size are related by the CFL number,

∆t =
CFL h

λ
(8.36)

where λ is the magnitude of the largest eigenvalue of the flux Jacobian.
This permits the discretization error to be written as

ej =

(
α + β

CFL
λ

)
∆xp + H.O.T. (8.37)

In terms of a global error metric,

‖e‖ = αhp + H.O.T. (8.38)

For all of the computations presented below, errors are measured in
terms of a discrete L1 norm,

‖e‖ = ∑i |ue
i − ui|

∑i |ue
i |

(8.39)

or in terms of a discrete L∞ norm,

‖e‖ = max
j
|ue

j − uj|. (8.40)

Using a sequence of two grids, the global error metric may be used to
extract the order of accuracy p, e.g.,

‖e1‖
‖e2‖

=

(
h1

h2

)p
, (8.41)

where the subscript refers to the grid level. For all calculations pre-
sented here, h1/h2 = 2.

For smooth solutions we expect to recover an order of accuracy that
is consistent with the formal accuracy of the method, e.g., second-
order or O(h2) for a formally second-order spatial discretization (p =

2). For solutions with non-smooth data, e.g., shocks, we expect to
achieve first-order or O(h) convergence rates measured in the L1 norm.
In addition to the order of accuracy, the magnitude of the measured
error is also useful in a multi-methods comparison. In the ensuing
discussion, results of convergence studies for a series of smooth and
non-smooth initial data and grid configurations are reported.
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Translating Gaussian

The first problem in our suite of problems used to study the con-
vergence of edge-based advection algorithms consists of a translating
Gaussian pulse. The governing equation for this problem is

∂u
∂t

+∇ · (cu) = 0, (8.42)

The initial conditions are

u(x, 0) = exp

{
− (x− x)2

2σ2
0

}
, (8.43)

where

x = x0 +
∫ t

0
c(τ)dτ, (8.44)

and

σ2 = σ2
0 + 2κt. (8.45)

The exact solution is

û(x, t) =
σ0

σ
exp

{
− (x− x)2

2σ2

}
. (8.46)

For our purposes, a computational domain with 0 ≤ x ≤ 15 is
used. The initial conditions are specified with c = (1.0, 0) and σ0 =

0.25 with the Gaussian centered at x0 = 2.05. In order to compute
convergence rates, the solution error is computed as a function of time.
The convergence rates are calculated at t = 2.5, 5.0, 10.0 time units for
a variety of grids discretized with both triangular and quadrilateral
elements.

Uniform Triangular Elements

The 15× 1 computational domain discretized by a regular configura-
tion of triangular elements is shown in Figure 8.5.

The L1 error and associated convergence rates are tabulated at three
times, t = 2.5, 5.0, 10.0 time units, in Table 8.1 and shown graphically
in Figure 8.6. The convergence rates are approaching h2 as the mesh
is refined – note that mesh refinement was achieved by a doubling
procedure that retains the original nodal coordinates from the original
coarse-grid.

Figure 8.5: Mesh configuration for all-
triangular meshes.
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Figure 8.6: L1 errors at t = 2.5, 5.0, and
10.0 for the all-triangular meshes.

Mesh Size t = 2.5 t = 5.0 t = 10.0
1/h

10

20

40

80

160

L1 Error Rate
9.592E-02 –
2.670E-02 1.8449

7.608E-03 1.8113

2.074E-03 1.8750

5.464E-04 1.9245

L1 Error Rate
1.520E-01 –
4.690E-02 1.6969

1.360E-02 1.7859

3.895E-03 1.8038

1.052E-03 1.8879

L1 Error Rate
2.219E-01 –
8.350E-02 1.4104

2.385E-02 1.8076

7.207E-03 1.7266

2.020E-03 1.8351

Table 8.1: L1 errors and convergence
rates for the all-triangular meshes at t =
2.5, t = 5.0, and t = 10.0.
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Triangular Elements – Rotated Grid

The computations reported in §8.5 are repeated here on a series of
grids with identical resolution, but which are rotated by 30o from
the x-axis. Although the wave propagation problem remains one-
dimensional along the mesh lines, it exercises the multi-dimensional
discrete operators of the code and test the natural boundary conditions
which specify that ∂u/∂n = 0.

Figure 8.7: Rotated mesh configuration
for all-triangular meshes.
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Figure 8.8: L1 errors at t = 2.5, 5.0,
and 10.0 for the rotated all-triangular
meshes.
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Mesh Size t = 2.5 t = 5.0 t = 10.0
L/h

10

20

40

80

160

L1 Error Rate
9.592e-02

2.670e-02 1.8449

7.608e-03 1.8114

2.074e-03 1.8749

5.464e-04 1.9246

L1 Error Rate
1.520e-01

4.689e-02 1.6970

1.360e-02 1.7858

3.895e-03 1.8039

1.052e-03 1.8879

L1 Error Rate
2.220e-01

8.349e-02 1.4105

2.385e-02 1.8077

7.207e-03 1.7265

2.020e-03 1.8348

Table 8.2: L1 errors and conver-
gence rates for the rotated all-triangular
meshes at t = 2.5, t = 5.0, and t = 10.0.

Quadrilateral Elements

In this section, the translating Gaussian test case is performed on a
sequence of all quadrilateral grids as shown in Figure 8.9. A conver-
gence plot is shown in Figure 8.10 along with the associated error data
in Table 8.3.

Figure 8.9: Mesh configuration for all-
quadrilateral meshes.
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Figure 8.10: L1 errors at t = 2.5, 5.0, and
10.0 for the all-quadrilateral meshes.

Quadrilateral Elements – Rotated Grid

The computations reported in §8.5 are repeated here on a series of grid
with identical resolution, but which are rotated by 30o from the x-axis.
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Mesh Size t = 2.5 t = 5.0 t = 10.0
1/h

10

20

40

80

160

320

640

1280

L1 Error Rate
1.490E-01 –
4.956E-02 1.589

1.506E-02 1.718

4.384E-03 1.781

1.186E-03 1.886

3.069E-04 1.951

7.816E-05 1.974

1.981E-05 1.980

L1 Error Rate
2.268E-01 –
8.545E-02 1.408

2.655E-02 1.686

8.163E-03 1.702

2.280E-03 1.840

6.020E-04 1.921

1.544E-04 1.963

3.941E-05 1.970

L1 Error Rate
3.326E-01 –
1.303E-01 1.352

4.738E-02 1.459

1.485E-02 1.674

4.342E-03 1.774

1.173E-03 1.888

3.043E-04 1.946

7.819E-04 1.961

Table 8.3: L1 errors and convergence
rates at t = 5 for the all-quadrilateral
meshes.

Although the wave propagation problem remains one-dimensional along
the mesh lines, it exercises the multi-dimensional discrete operators of
the code and test the natural boundary conditions which specify that
∂u/∂n = 0.

Figure 8.11: Mesh configuration for the
rotated all-quadrilateral meshes.

Mixed Quad/Tri Meshes

In this section, a the results of a series of convergence studies per-
formed using mixed triangle/quadrilateral meshes are reported. Three
cases were considered: a) a longitudinal split with triangles on the bot-
tom of the domain and quadrilaterals on the top, b) a mixed domain
starting with a patch of quadrilaterals, and c) a mixed domain starting
with a patch of triangles.
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Case-A: Longitudinal Split

Figure 8.12: Mesh configuration for the
case-a tri-quad meshes.
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Figure 8.13: L1 errors at t = 2.5, 5.0, and
10.0 for the case-a tri-quad meshes.

Mesh Size t = 2.5 t = 5.0 t = 10.0
1/h

10

20

40

80

160

L1 Error Rate
1.165E-01

3.300E-02 1.8194

9.050E-03 1.8665

2.532E-03 1.8374

6.683E-04 1.9218

L1 Error Rate
1.811E-01

5.724E-02 1.6615

1.565E-02 1.8711

4.548E-03 1.7829

1.239E-03 1.8753

L1 Error Rate
2.806E-01

9.133E-02 1.6196

2.742E-02 1.7359

8.103E-03 1.7586

2.299E-03 1.8175

Table 8.4: L1 errors and convergence
rates at t = 5.0 for the case-a tri-quad
meshes.
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Case-B: Quad/Tri Patches

Figure 8.14: Mesh configuration for the
case-b tri-quad meshes.
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Figure 8.15: L1 errors at t = 2.5, 5.0, and
10.0 for the case-b tri-quad meshes.

Mesh Size t = 2.5 t = 5.0 t = 10.0
1/h

10

20

40

80

160

320

L1 Error Rate
1.136E-01

2.379E-02 2.2560

6.455E-03 1.8818

1.849E-03 1.8036

5.042E-04 1.8745

1.347E-04 1.9046

L1 Error Rate
1.906E-01

4.703E-02 2.0191

1.225E-02 1.9410

3.498E-03 1.8077

9.486E-04 1.8828

2.471E-04 1.9405

L1 Error Rate
2.901E-01

8.395E-02 1.7888

2.139E-02 1.9726

6.567E-03 1.7037

1.868E-03 1.8134

4.972E-04 1.9097

Table 8.5: L1 errors and convergence
rates at t = 5.0 for the case-b tri-quad
meshes.
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Case-C: Tri/Quad Patches

Figure 8.16: Mesh configuration for the
case-c tri-quad meshes.
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Figure 8.17: L1 errors at t = 2.5, 5.0, and
10.0 for the case-c tri-quad meshes.

Mesh Size t = 2.5 t = 5.0 t = 10.0
1/h

10

20

40

80

160

L1 Error Rate
1.273E-01

3.666E-02 1.7957

1.040E-02 1.8183

2.884E-03 1.8501

7.586E-04 1.9265

L1 Error Rate
1.920E-01

5.812E-02 1.7242

1.682E-02 1.7893

5.120E-03 1.7156

1.428E-03 1.8423

L1 Error Rate
2.922E-01

9.880E-02 1.5644

2.989E-02 1.7250

9.293E-03 1.6853

2.650E-03 1.8103

Table 8.6: L1 errors and convergence
rates at t = 2.5, t = 5.0, and t = 10.0.
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Rotating Cone

The rotating cone problem has been documented in the work by Bap-
tista, et al. [Baptista et al., 1995]. For our purposes, the problem con-
sists of ‘pure’ advection problem, i.e.,

∂u
∂t

+∇ · (cu) = 0, (8.47)

where c = (cx, cy), u = −ω y, v = ω x, and ω = π/100. The domain
is defined −100 ≤ x ≤ 100, and −100 ≤ y ≤ 100.

The exact solution to this problem is

û(x, y, t) = exp

{
− (x− x)2

2σ2
0
− (y− y)2

2σ2
0

}
, (8.48)

where

x = x0 +
∫ t

0
cx(τ)dτ, (8.49)

and

y = y0 +
∫ t

0
cy(τ)dτ. (8.50)

Quadrilateral Elements

Figure 8.18: Mesh configuration for the
quadrilateral meshes.
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Figure 8.19: L1 Error as a function of
time for the quadrilateral meshes.

Mesh Size t = 50 t = 100 t = 200
L/h

40

80

160

320

640

L1 Error Rate
2.335E-01 –
7.206E-02 1.6965

1.539E-02 2.2271

3.552E-03 2.1153

8.675E-03 2.0337

L1 Error Rate
3.585E-01 –
1.271E-01 1.4961

3.046E-02 2.0607

7.078E-03 2.1056

1.728E-03 2.0342

L1 Error Rate
5.290E-01 –
1.989E-01 1.4114

6.002E-02 1.7284

1.409E-02 2.0907

3.444E-03 2.0322

Table 8.7: L1 errors and convergence
rates at t = 5, t = 100, and t = 200 for
the quadrilateral meshes.
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Mixed Quad/Tri Meshes

Figure 8.20: Mesh configuration for the
mixed meshes.

Mesh Size t = 50 t = 100 t = 200
L/h

40

80

160

320

640

L1 Error Rate
1.613E-01 –
3.516E-02 2.1981

8.298E-03 2.0830

2.828E-03 1.5531

1.121E-04 1.3342

L1 Error Rate
3.049E-01 –
8.849E-02 1.7847

1.857E-02 2.2522

4.399E-03 2.0779

1.304E-03 1.7541

L1 Error Rate
4.670E-01 –
1.526E-01 1.6136

3.633E-02 2.0707

8.324E-03 2.1257

2.265E-03 1.8777

Table 8.8: L1 errors and convergence
rates at t = 50, t = 100, and t = 200
for the mixed meshes.
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Figure 8.21: L1 Error as a function of
time for the mixed meshes.



9 Gradient Approximation

The Hydra toolkit provides a general set of tools for implementing
multiphysics applications using essentially any unstructured-grid spa-
tial discretization. For finite-volume centric applications where local-
conservation is deemed to be important, the gradient approximation
becomes central to designing accurate and robust methods. This chap-
ter reviews the cell and edge-centered gradient approximations that
have been tested during the development of the Hydra, the associated
compressible and incompressible flow solvers, and highlights those
methods that perform the best.

Background

The topic of gradient estimation is central to the development of ac-
curate finite-volume methods on unstructured grids. Therefore, the
early-development of Hydra focused on the choice of the best gradi-
ent approximation. The development of robust and accurate gradient
estimators for unstructured grids is still an area of relatively active
research as shown by some of the very recent work by Bechten and
Straatman [Betchen and Straatman, 2010] and Puigt, et al. [Puigt et al.,
2010].

The following criteria were used to develop the gradient estimation
techniques implemented in Hydra.

• Deliver linear consistency

• Suitable for unstructured grids with mixed element types

• Second-Order Accuracy

• Computational complexity

In addition, the choice of where the gradient estimation is centered
on an unstructured grid is important. We considered primarily face-
centered and element-centered gradient estimations as these were of
primary interest for the development of the compressible and incom-
pressible flow solvers. During the scoping studies for Hydra devel-
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opment, we considered the following possible choices in light of our
primary criteria listed above.

Green-Gauss: As demonstrated by Barth and co-workers [Barth and
Jesperson, 1989, Barth and Frederickson, 1990, Barth, 1993, Barth,
Barth and Ohlberger, 2004], the Green-Gauss estimator does repro-
duce exact gradients for linear fields. (Rejected)

Modified Green-Gauss: The recent work by Betchen and Straatman [Betchen
and Straatman, 2010] uses a modified construction of the gradient
with the underlying formulation based on the Green-Gauss gradi-
ent. This has not been tested in Hydra. The LST scheme by Chang
and Yuan [Chang and Yuan, 2009] and the approach by Svärd and
Nordström [Svärd and Nordström, 2004] also remain untested in
Hydra. The work by Klinger, et al. [Klinger et al., 2004] suggests
a methodology that delivers second-order accuracy on highly non-
orthogonal meshes. This was tested and rejected because it did not
deliver exact gradients for linear fields. (Untested/Rejected)

Gradient Smoothing: There are a number of papers that suggest that
adequate accuracy can be obtained by applying a local smoothing
operation to the Green-Gauss gradient estimate. This type of ap-
proach is characterized by the work done by Liu and Xu [Liu and
Xu, 2008]. Testing in Hydra showed that this approach does not
reproduce exact gradients for linear fields. (Rejected)

Gradient Correction: There are a number of gradient correction prac-
tices touted in the literature as found in the work by Lehnhäuser
and Schäfer [Lehnhaäuser and Schäfer, 2002], AVL’s SWIFT code
[AVL, 2004] and Liu and Xu [Liu and Xu, 2008]. These methods
are used with primarily with Green-Gauss, and sometimes least-
squares gradient estimators, and are applied to the viscous/diffusive
terms in an incompressible flow solver. (Used with edge gradients)

Ničeno’s Method: The work by Ničeno [Ničeno, 2006] selects two points
that are co-linear with the dual-edge (face) normal, and directly
constructs an edge-gradient. The edge-gradient is comprised of a
face-gradient oriented in the normal-direction using the fictitious
normal-aligned points, and a linear combination of the connected
element gradients projected in the normal direction. This approach
directly constructs the normal flux required for the diffusive terms
and makes use of cell-centered least-squares gradient approxima-
tions. The unique aspect of this work is that it suggests an im-
plementation approach that constructs one-sided element-oriented
“stiffness” operators that can assembled to form the global matrix.
This approach may be useful for obtaining performance gains in
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Hydra. At this time, this approach remains untested in Hydra.
(Untested)

Coirier’s Diamond Path: This method was developed by Coirier in 1994

and suggested as an accurate scheme for gradient estimation in Vi-
gneron, et al. [Vigneron et al., 2005]. As the method is only pre-
sented in 2-D, it was rejected as a suitable method. (Rejected)

Least-Squares: A large number of researchers have advocated the use of
least-squares gradient estimators [Barth and Jesperson, 1989, Barth
and Frederickson, 1990, Barth, 1993, Barth, Barth and Ohlberger,
2004, Mavripilis, 2003, Mavriplis, 2007, Anderson and Bonhaus, 1994,
Ollivier-Gooch and Altena, 2002, A. and Turner, 2005]. We have
adopted the weighted least-squares procedure for both cell and
edge-centered gradient estimation. This methodology is the only
one we have found that essentially satisfies all of the criteria above.
For the incompressible flow solver, the edge-based gradients are
modified to deal with extreme mesh distortion in the construction
of the diffusive fluxes as explained in the ensuing discussion. (Used
for cell and edge gradients)

Modified Least-Squares: The work on constrained least-squares work by
Rider and Kothe [Rider and Kothe, 2002], and Kothe, et al. [Kothe
et al., 2002] and by Chenoweth, et al. [Chenoweth et al., 2007] has
not been tested in Hydra. (Untested)

FEM Projection: Another approach that was considered what the use
of an L2 projection of cell-centered data to the nodes, followed by
a gradient calculation using the element shape functions. This was
rejected as it can not be used for edge gradients, and would involve
increased computational complexity as well as communication in
parallel. (Rejected)

Non-conforming Meshes: The work by Chang and Yuan [Chang and
Yuan, 2009] describes the construction of the diffusive fluxes for
general non-conforming meshes. This technique makes use of nodal
unknowns to construct the flux, but effectively eliminates the nodal
variables to cast the discrete operator in terms of element-centered
data. The node-centered variables are cast as a projection of the
element-centered values with weights based on the local topology
of the mesh. In effect, this approach attempts to use an FEM-like
projection to construct nodal data used in an integration over the
edge-centered dual-grid element. This construction is used with
a trapezoidal integration of the values over each cell-face in order
to construct a gradient using effectively Coirier’s diamond path.
This approach requires the storage of an inverse connectivity, but
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appears to consistently deliver second-order accuracy on arbitrary
grids. Extension to treat meshes with arbitrary combinations of
tetrahedron, wedges, pyramids and hexahedra has not been at-
tempted. (Untested)

Compatible/Mimetic Methods: The work by Lipnikov, et al. [Kuznetsov
et al., 2004, Lipnikov et al., 2007] describes the use of the so-called
mimetic or compatible discretization method for construction of dif-
fusive fluxes on meshes comprised of arbitrary polyhedra. At the
time of this writing, these methods were considered to be exces-
sively computationally intensive for a production-level code. (Untested)

We also note the work by Wang [Wang, 1999] on arbitrary poly-
hedral meshes. If future efforts pursue arbitrary polyhedral meshes,
this may be of some value. For node-centered gradient approxima-
tions, the work by Smith, et al. [Smith et al., 2007] presents a detailed
comparison of gradient estimators.

Element-Centered Gradients

The cell-centered gradient approximations presented in Chapter 8 de-
tail the weighted least-squares method used for cell-centered gradients
in Hydra. The Green-Gauss, least-squares and weighted least-squares
methods are presented in detail in Chapter 8 as well.

Edge-Centered Gradients

The edge-centered least-squares gradient calculation closely follows
the development in §8.3. However, because the gradient is centered at
the dual-edge, the field value is unknown requiring the estimation of
both the field value and its gradient at the dual-edge.

The least-squares procedure attempts to find discontinuous recon-
struction polynomials that are close to their C0 counterparts. For
the edge-centered gradient, cell-centered data is used to construct the
least-squares approximation. Figure 9.1 shows the data required for
the least-squares reconstruction on a patch of triangles and quadrilat-
erals.

Using the convention that ∆xic = xi − xc, we proceed by expand-
ing for each known data point around point ’c’. For N points, the
expansion is

u1 = uc +
∂u
∂x ∆x1c +

∂u
∂y ∆y1c

u2 = uc +
∂u
∂x ∆x2c +

∂u
∂y ∆y2c

...
uN = uc +

∂u
∂x ∆xNc +

∂u
∂y ∆yNc

(9.1)
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Figure 9.1: Data used for the edge-
centered least-squares reconstruction.

For a three-dimensional grid patch with N data points, this becomes

u1 = uc +
∂u
∂x ∆x1c +

∂u
∂y ∆y1c +

∂u
∂z ∆z1c

u2 = uc +
∂u
∂x ∆x2c +

∂u
∂y ∆y2c +

∂u
∂z ∆z2c

...
uN = uc +

∂u
∂x ∆xNc +

∂u
∂y ∆yNc +

∂u
∂z ∆zN2

(9.2)

The edge-centered least-squares reconstruction procedure is equiv-
alent to solving the following non-square problem using the data sur-
rounding each edge. the minimization problem becomes

1 ∆x1c ∆y1c ∆z1c

1 ∆x2c ∆y2c ∆z2c
...

...
1 ∆xNc ∆yNc ∆zNc




uc
∂u
∂x
∂u
∂y
∂u
∂z

 =


u1

u2
...

uN

 (9.3)

Following the cell-centered least-squares procedure, in order to solve
for least-squares problem in Eq. (9.3), the normal equations are formed
as

∑ 1 ∑ ∆xic ∑ ∆yic ∑ ∆zic

∑ ∆xic ∑ ∆x2
ic ∑ ∆xic∆yic ∑ ∆xic∆zic

∑ ∆yic ∑ ∆xic∆yic ∑ ∆y2
ic ∑ ∆yic∆zic

∑ ∆zic ∑ ∆xic∆zic ∑ ∆yic∆zic ∑ ∆z2
ic




uc
∂u
∂x
∂u
∂y
∂u
∂z

 =


∑ ui

∑ ui∆xic

∑ ui∆yic

∑ ui∆zic


(9.4)

where the summation is over all data points connected to the edge
center ’c’ by dual-edge adjacency. Thus, the symmetric 4× 4 system
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is formed one dual-edge at a time in an “edge-by-edge” fashion and
requires neighbor information that is accessible by traversing dual-
edges.

The implementation in Hydra uses a weighted least-squares approx-
imation with the weighting proposed by Mavriplis [Mavripilis, 2003].
Using Eq. (9.4) as a starting point, the edge-centered weighted least-
squares problem is

∑ w2
ic ∑ w2

ic∆xic ∑ w2
ic∆yic ∑ w2

ic∆zic

∑ w2
ic∆xic ∑ w2

ic∆x2
ic ∑ w2

ic∆xic∆yic ∑ w2
ic∆xic∆zic

∑ w2
ic∆yic ∑ w2

ic∆xic∆yic ∑ w2
ic∆y2

ic ∑ w2
ic∆yic∆zic

∑ w2
ic∆zic ∑ w2

ic∆xic∆zic ∑ w2
ic∆yic∆zic ∑ w2

ic∆z2
ic




uc
∂u
∂x
∂u
∂y
∂u
∂z

 =


∑ w2

icui

∑ w2
icui∆xic

∑ w2
icui∆yic

∑ w2
icui∆zic


(9.5)

where
wic =

1√
∆x2

ic + ∆y2
ic + ∆z2

ic

(9.6)

Remark 2 This scaling results in a determinant of the least-squares matrix
that is O(1) for the element-centered gradient estimate. However, for the
full least-squares problem, ∑ w2

ic can become large as ∆xic, ∆yic, ∆zic become
small while the other entries of the matrix are scaled properly. An alterna-
tive weighting that more closely approximates a diagonal-scaling, and can
be computed edge-by-edge, is desirable and should be explored in in Hydra
toolkit.

Diffusive Fluxes

The diffusive flux terms that arise in the Navier-Stokes equations, the
energy equation, and advective-diffusion equations are constructed us-
ing the basic gradient estimate described above.

The diffusive flux terms are typically of the form

I =
∫

Γ
∇u · ndΓ (9.7)

where n is the face normal where the gradient estimate is computed.
In the finite volume community, the diffusive fluxes are frequently

constructed using a modified gradient based on the local cell geome-
try and and dual-edge configuration. It is not uncommon to find situ-
ations where a dual-edge does not align directly with the face-normal
associated with the dual edge. In this situation, it can be desirable to
weight the gradient by a one-dimensional gradient associated with the
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dual-edge data. Figure 9.2 shows a typical situation where a and b rep-
resent cell-centers of triangles with their associated field data ua and
ub. The vector between the cell-centers is d = xb − xa with magnitude
d =
√

d · d.
The so-called “directional correction” can be designed in several

ways. The base edge-gradient is typically formulated as an average
or interpolation of the Green-Gauss cell-centered gradients. Here, we
present the directional correction in terms of the least-squares gradi-
ent. This choice was made because it is not possible to construct an
interpolated/corrected gradient preserves linear consistency from an
underlying gradient estimator that does not preserve linear consis-
tency.

The method used in AVL SWIFT [AVL, 2004] replaces the normal
part of the face gradient with a gradient computed in the normal di-
rection using the cell-center data ua and ub.

∇u = ∇LSu− (∇LSu · d) n
n · d + (ub − ua)

n
n · d (9.8)

where ∇LSu is the least-squares edge-gradient computed using Eq.
(9.5).

In comparison, the method advocated by Liu and Xu [Liu and Xu,
2008] and by Puigt, et al. [Puigt et al., 2010] uses a slightly different
correction. In this case, the orientation is biased in the direction of the
distance vector between adjacent cell-centers.

∇u = ∇LSu− (∇LSu · d) d√
d · d

+ (ub − ua)
d√
d · d

(9.9)

An alternative approach is to retain the projection into the normal
direction, but scale according to the distance vector.

∇u = ∇LSu− (∇LSu · d) n√
d · d

+
(ub − ua)√

d · d
n√
d · d

(9.10)

This approach has seen limited testing, but does not appear to provide
a significant improvement over the implemented approach in Eq.(9.8).

Yet another similar formulation has been advocated by Mavrip-
ilis [Mavriplis, 2007]. However, the stated formulation on pg. 15 in
[Mavriplis, 2007] does not appear to be consistent as it appears to fail
to give the effective face difference any direction yielding rank incon-
sistency.

The scaling of the directional corrections is similar, with the AVL
correction in Eq. (9.8) leading to a difference between two large num-
bers in the limit as n and d become orthogonal and n · d approach
zero. Practically speaking, the normal and distance vectors can only be
orthogonal on a mesh where the elements have completely collapsed.
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In contrast, the more typical gradient fix-up in Eq. (9.9) relies on the
the actual cell-center distance for the gradient adjustment and appears
to be well-behaved on meshes with extreme distortion. However, this
formulation not produce results that are of sufficient accuracy as borne
out by testing on the 15o skew lid-driven cavity.

In all three cases, if the input field is considered to be linear in the
spatial coordinates, then the gradient-corrections will preserve linear
consistency assuming that correction is applied to gradient that deliv-
ers linear consistency.

Remark 3 In Eq. (9.8) and (9.9), we have used ∇LSu instead of the typical
use of the averaged cell-centered gradients, i.e., 1/2(∇ua +∇ub) correspond-
ing to dual-edge vertex values of the gradients. Note also, that the AVL flux is
reported based on using an interpolation of the cell-centered gradients rather
than the average. See §11.2 for details on dual-edge interpolation.

As a point of comparison, discontinuous Galerkin methods also use
a constructed diffusive flux that is based on the average of the element-
local gradients, jumps in the field variable and the element gradient.
One such flux is the Nicens flux. The form of the Nicens flux is

he
σ =

1
2
(σa + σb)− αe(ub − ua) + βe(σb − σa) (9.11)

where he
σ is the flux, σ is proportional to the gradient of u, and sub-

scripts a, b indicate opposite sides of an element face, e.g., vertices of
the dual-edge. There is an obvious relationship between the average
and jump terms to the flux estimates in Eq. (9.8) and (9.9). However,
the jump in the gradient terms (σb − σa) does not have an obvious cor-
respondence. In the future, the discontinuous Galerkin fluxes may be
implemented directly in the Hydra toolkit.

Currently, the AVL gradient correction is used in the diffusive least-
squares operators in Hydra.

Figure 9.2: Geometry for normal gradi-
ent correction.



10 Wall-Normal Distance Calculation

Hydra provides a framework for implementing advanced turbulence
models in arbitrarily complex geometry that is discretized with un-
structured meshes. This requires an ability to estimate the normal dis-
tance from a given grid point to the nearest surface in essentially any
geometrical configuration. This appears to be a geometrically complex
and computationally intensive process for arbitrarily complex geome-
try if search/intersection methods are used. Instead, Hydra computes
a distance function by solving a simple Poisson problem with a dis-
tance reconstruction.

The equation that controls the variation of the normal distance to
a boundary surface is a special case of the Eikonal equation [Sethian,
1999, Fares and Schroder, 2002]

‖ ∇φ(x) ‖= F(x) in Ω, F(X) > 0,

φ = g(x) on Γ
(10.1)

Here, φ is the level set, X are the spatial coordinates, F(X) is a pre-
scribed function, Ω is the domain in Rn and Γ is the boundary of Ω.
For the special case where F(x) = 1,

‖ ∇φ ‖= 1 (10.2)

The level set curves φ(x) = C that satisfy Eq.(10.2) provide the dis-
tance C to the surface φ = g(x). Thus to compute the normal distance
to an arbitrary boundary surface Eq. (10.2) has to be resolved. Unfor-
tunately, solving this equations is a challenging task. Specially since
the φ field may be non-differentiable [Sethian, 1999] .

An alternative approach that has been proposed to address the solu-
tion of the Eikonal equation is to include diffusion terms that provides
smooth differentiable φ solutions and easy the numerical treatment.

‖ ∇φ ‖= 1 + Γ∇2φ (10.3)

Here Γ is the diffusion coefficient. It is important to note that Γ must
have the proper limit Γ → 0 in order to accurately reproduce the dis-
tance from the wall. This is especially true close to the wall, where the
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turbulent models require accurate values for these distance in order to
yield accurate results.

Although, from a mathematical stand point the problem of comput-
ing the wall-normal distance is trivial, obtaining accurate solution with
simple numerical algorithms is not a completely solve issue [Sethian,
1999, Tucker, 2003]. A good review of the methods currently avail-
able to solve the Eikonal or approximate versions of it can be found
in Refs. [Sethian, 1999, Tucker, 2003]. One of the most interesting ap-
proaches is to solve Eq.(10.3), however the numerical treatment is not
trivial and could potentially increase the cost of the simulation when
grid deforming simulations are required [Tucker, 2005].

In order to reduce the significant overload of resolving the Eikonal
or one of its approximate equation, a simple approach was proposed
that is able to provide accurate results in the region close to the bound-
ary. It is exactly in this region where most modern turbulence models
require an accurate representation of this distance. The Poisson equa-
tion is more amenable to solve than the previous equations [Tucker,
2003]

∇2φ = −1 (10.4)

In this approach φ does not directly represent the distance to the
surface, therefore an additional relation is required to compute the
distance to the surface:

d = ±

√√√√ ∑
j=1,3

(
∂φ

∂xj

)2

+

√√√√ ∑
j=1,3

(
∂φ

∂xj

)2

+ 2φ (10.5)

The numerical complexity of the Poisson method is significantly
superior to the other approaches described in the literature [Tucker,
2005]. Additionally, the literature indicates that the Poisson method
is able to produce results comparable to methods when the turbu-
lence models are incorporated [Tucker, 2003, Tucker and Davidson,
2004, Tucker, 2005, 2006, 2007]. Therefore Eqs.(10.4) and Eq.(10.5) are
adopted to compute the distance to the wall-surfaces.

Numerical Examples

This section presents numerical examples to illustrate the potential
of the approach previously described to approximate the wall-normal
distance in complex geometries. The examples presented are summa-
rized next

• Cylinder within a channel with walls in the top and bottom sides

• Two cylinder within a channel with walls in the top and bottom
sides
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• 90o corner

• Three dimensional YF17 geometry

• Three element airfoil geometry

These problem aim to demonstrate the potential of the approach
used in Hydra predict the wall-normal distance in complex geometries
typically found in complex 3-D geometries of engineering interest.

a)

b)

Figure 10.1: Normal distance calculation
results for a cylinder in a channel with
top and bottom wall: a) Direct calcula-
tion; b) Numerical calculation.
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a)

b)

Figure 10.2: Normal distance calculation
results for two cylinders in a channel
with top and bottom wall: a) Direct cal-
culation; b) Numerical calculation.

a)

b)

Figure 10.3: Normal distance calculation
results on corners: a) Direct calculation;
b) Numerical calculation.
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a)

b)

Figure 10.4: Normal distance calculation
results on YF17 geometry: a) perspective
view; b) side view.
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Figure 10.5: Normal distance calculation
results on three element airfoil geometry,
top view numerical calculation, bottom
view direct calculation.



11 Eulerian Formulation

This chapter presents the basic formulation that the hybrid FVM/FEM
flow solver currently uses. The interested reader may pursue the ref-
erences included in this chapter for details on the incompressible flow
solution algorithms and their implementation.

One of the primary targets is coupled multiphysics problems such
as fluid-structure interaction (FSI). FSI problems are inherently time-
dependent, and even when the structural response is quasi-static, the
fluid dynamics may still be transient. For this reason, the initial de-
ployment of the flow solvers in the Hydra Toolkit have focused on
projection methods because of their computational efficiency and ac-
curacy for transient flows.

For steady-state problems, the Hydra Toolkit architecture admits
virtually any solution method, and it is anticipated that steady-state
methods based on inexact Newton-Krylov of Jacobian-free Newton-
Krylov (JFNK) strategies will be implemented at some point. Simi-
larly, the SIMPLE family of solution methods can be considered for
implementation at some point in the future.

The Projection Method

The solution of the time-dependent incompressible Navier-Stokes equa-
tions poses several algorithmic problems due to the div-free constraint,
and the concomitant spatial and temporal resolution required to per-
form time-accurate solutions particularly when complex geometry is
involved. Although fully-coupled solution strategies are available, the
cost of such methods is generally considered prohibitive for time-
dependent simulations where high-resolution grids are required. The
application of projection methods provides a computationally efficient
alternative to fully-coupled solution methods.

A detailed review of projection methods is beyond the scope of this
section, but a partial list of relevant work is provided for the interested
reader. Projection methods, also commonly referred to as fractional-
step, pressure correction methods, or Chorin’s method [Chorin, 1968]
have grown in popularity over the past 20 years due to the relative ease
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of implementation and computational performance. This is reflected
by the volume of work published on the development of second-order
accurate projection methods, see for example van Kan [Kan, 1986],
Bell, et al. [Bell et al., 1989], Gresho, et al. [Gresho, 1990, Gresho
and Chan, 1990, Gresho et al., 1995, Gresho and Chan, 1996], Alm-
gren, et al. [Almgren et al., 1993, 1996, 2000], Rider [Rider, 1994a,b,
Rider et al., 1995, Rider, 1995], Minion [Minion, 1996], Guermond and
Quartapelle [Guermond and Quartapelle, 1997], Puckett, et al. [Puck-
ett et al., 1997], Sussman, et al. [Sussman et al., 1999], and Knio, et al.
[Knio et al., 1999]. The numerical performance of projection methods
has been considered by Brown and Minion [Brown and Minion, 1995,
Minion and Brown, 1997], Wetton [Wetton, 1998], Guermond [Guer-
mond, 1996, 1997], Guermond and Quartapelle [Guermond and Quar-
tapelle, 1998a,b], and Almgren et al. [Almgren et al., 2000].

As background, a brief review of Chorin’s original projection method
is presented before proceeding with the finite element form of the pro-
jection algorithm. The vector form of the momentum equations may
be written as

ρ
∂v
∂t

+∇p = F (v), (11.1)

where for a constant viscosity,

F (v) = f + µ∇2v− ρv · ∇v. (11.2)

Now, F (v) may be decomposed into a div-free component

∇ ·
{

∂v
∂t

}
= 0, (11.3)

and a curl-free part
∇×∇p = 0. (11.4)

Discretizing in space and time, the decomposition, neglecting the
contribution of the pressure gradient, yields

ρ
(v∗

n+1 − vn)

∆t
= F h(v), (11.5)

where F h(v) is the spatially discrete analogue of F in Eq. (11.2), and
v∗

n+1
is an approximate discrete velocity field at time n + 1. Note that

the discrete divergence of v∗
n+1

is generally not zero, i.e. GTv∗n+1 6= 0
where GT is the discrete divergence operator. The functional depen-
dence of F h upon the discrete velocity, v, depends upon whether the
algorithm is implicit, explicit, or semi-implicit. However, the depen-
dence on pressure, or rather pressure gradient, is explicit so that

(v∗
n+1 − vn)

∆t
=

(vn+1 − vn)

∆t
+

1
ρ

Gpn+1, (11.6)
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where G is the discrete gradient operator, and GT is the discrete di-
vergence operator. Applying the discrete divergence operator to Eq.
(11.6) yields a Poisson equation for the pressure at time level n + 1,

GT 1
ρ

Gpn+1 =
1

∆t
GTv∗

n+1
. (11.7)

By eliminating the velocity at time level n, Eq. (11.6) yields a rela-
tionship for the projected div-free velocity field.

vn+1 = v∗
n+1 − ∆t

ρ
Gpn+1. (11.8)

Chorin’s method is considered to be a non-incremental projection
method that yields first-order accuracy in time for the velocity. In
the ensuing discussion, we will use the more modern second-order
incremental projection method that delivers second-order accuracy in
time.

Projection Properties

The philosophy behind projection algorithms is to provide a legitimate
way to decouple the pressure and velocity fields in the hope of pro-
viding an efficient computational method for transient, incompressible
flow simulations. In practice, the action of the projection, P , is to re-
move the part of the approximate velocity field that is not div-free, i.e.,
v = P(v∗). In effect, the projection is achieved by decomposing the ve-
locity field into div-free and curl-free components using a Helmholtz
decomposition. The decomposition may be written as

ρv∗ = ρv +∇λ, (11.9)

where v∗ is a non-solenoidal velocity field, v is its div-free counterpart,
and ∇λ is the curl-free component, i.e., ∇×∇λ = 0.

Thus, given an approximate, non-solenoidal velocity field, v∗, F (v∗)
may be projected onto a divergence-free subspace such that

ρ
∂v
∂t

= P(F (v∗)), (11.10)

and
∇p = Q(F (v∗)). (11.11)

Here, P and Q are the projection operators, and they have the fol-
lowing properties. P projects a vector into a div-free subspace, and Q
projects a vector into a curl-free subspace. Both P and Q are idem-
potent, i.e., P = P2 and Q = Q2. Therefore, repeated application
of the projection operators does not continue to modify the projected
results. The projection operators are orthogonal, and commute, i.e.,
PQ = QP = 0.
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The explicit forms of the continuous projection operators are

P(·) =
{

I −∇(∇2)−1∇·
}
(·), (11.12)

and
Q(·) = I −P = ∇(∇2)−1∇ · (·). (11.13)

It should be noted that P , and Q have built-in all the appropriate
physical boundary conditions. Further, The eigenvalues of P and Q
are either 0 or 1 so that the projections are always norm-reducing.

Semi-Implicit Projection Method

As a starting point for the semi-implicit projection method, we adopted
Gresho’s second-order “P2” method [Gresho, 1990, Gresho and Chan,
1990]. The desire for local-conservation compelled the use of a discontinuous-
Galerkin/Finite Volume framework with all variables cell-centered,
i.e., collocated velocity and pressure. The introduction of the PetSC
linear algebra packages, and in specific, the use of Sandia’s ML precon-
ditioner drove the choice to use node-centered pressures and leave all
transported variables located at cell centers. Thus, a hybrid DG/FVM
- Galerkin FEM method forms the basis for the incompressible solver.

The use of a hybrid discretization for the implementation of a pro-
jection solver is not new. The first use of a predominantly finite vol-
ume scheme with a continuous Galerkin pressure-Poisson operator ap-
peared in the work of Bell, et al. [Bell et al., 1989]. More recently, Ali-
abadi and co-workers have developed a hybrid finite element/volume
method [Tu and Aliabadi, 2007, Tu et al., 2009, Wan et al., 2009] that is
very similar to the methods presented here.

The governing equations presented in §3 serve as the starting point
for the development of the hybrid solution method. Here, we use
vector notation and write the stress in terms of fluid pressure and de-
viatoric stress, i.e., σ = −pI+ τ, and the advective terms in divergence
form. Following the procedure outlined in Chapter 8.1, we discretize
in space, integrate by parts, and apply the divergence theorem. Using
piecewise-constant weight functions yields

ρ
d
dt

∫
Ωe

v dΩe +
∮

Γe
ρv(v ·n) dΓe−

∮
Γe

ø ·n dΓe +
∫

Ωe
∇p dΩe−

∫
Ωe

f dΩe = 0

(11.14)
Using the definition for the cell-average from Eq. (8.8), the spatially-

discrete momentum equations become

ρΩe dv
dt

+
∮

Γe
ρv(v · n) dΓe −

∮
Γe

ø · n dΓe +
∫

Ωe
∇p dΩe −

∫
Ωe

f dΩe = 0

(11.15)
where the over-bar (v) has been dropped for simplicity. With the di-
vergence constraint, the discrete momentum equations form a system
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of differential algebraic equations (DAEs) rather than simple ordinary
differential equations (ODEs). For this reason, simple time-marching
schemes can not be applied to the div-constrained system of equations.

The projection algorithm can be derived in a number of ways. Here,
we choose to first develop the time-integrator, and identify the terms
associated with the projection via a Helmholtz decomposition of the
velocity. Before proceeding we define the following mass, advective,
viscous, gradient and body-force operators.

Me = ρΩe (11.16)

Ae(ρ, v)v =
∮

Γe
ρv(v · n) dΓe (11.17)

Kev =
∮

Γe
ø · n dΓe (11.18)

Be pΩe =
∫

Ωe
∇p dΩe (11.19)

Fe =
∫

Ωe
f dΩe (11.20)

We form the global operators, apply forward-Euler first, then backward-
Euler with explicit advection in both cases, and take the sum of the
fully-discrete systems results in the following

M
vn+1 − vn

∆t
− θKvn+1 = (1− θ)Fn + θFn+1

− A(ρ, v)vn + (1− θ)Kvn − Bpn − θB(pn+1 − pn) (11.21)

where 0 ≤ θ ≤ 1, θ = 0 corresponds to a forward-Euler, θ = 1/2 a
trapezoidal rule, and θ = 1 backward-Euler treatment of viscous and
body-force terms.

Using the Helmholtz decomposition as

ρv∗ = ρvn+1 +∇λ (11.22)

we introduce the following definition

λ = θ∆t(pn+1 − pn) (11.23)

Substituting in Eq. (11.21), and recognizing that K∇λ = 0 in Ω, the
momentum equation can be solved for the approximate velocity as

[M− θ∆tK]v∗ = [M + (1− θ)∆tK]vn

− ∆tA(ρ, v)vn − ∆tBpn + ∆t{(1− θ)Fn + θFn+1} (11.24)

Using the Helmholtz decomposition, and requiring ∇vn+1 = 0,
yields a pressure-Poisson equation (PPE) that can be solved for the
Lagrange multiplier λ.

∇ · 1
ρ
∇λ = ∇ · v∗ (11.25)
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Here, λ is node-centered, and so a typical Galerkin finite element
procedure is used to discretize Eq. (11.25). This process is well-known,
and only the final weak form is presented∫

Ω
∇w ·

(
1
ρ
∇λ

)
dΩ =

∫
Γ

w
{

1
ρ

∂λ

∂n

}
dΓ−

∫
Γ

wv∗ ·n dΓ+
∫

Ω
v∗ ·∇w dΩ

(11.26)
The discrete PPE is

Kpλ = D (11.27)

Remark 4 An alternative formulation for the PPE problem simply uses the
cell-centered divergence of the intermediate velocity for the right-hand-side of
the PPE as

∫
Ω∇ · v

∗. Testing has indicated that this form of the PPE led
to smoother pressures, but also resulted in start-up velocity and pressure that
were somewhat less accurate than those obtained using Eq. (11.26).

Given a velocity and pressure at time-level n, the P2 algorithm pro-
ceeds as follows.

Algorithm 1 Basic P2 Algorithm

1. Solve for v∗

[M− θ∆tK]v∗ = [M + (1− θ)∆tK]vn

− ∆tA(ρ, v)vn − ∆tBpn + ∆t{(1− θ)Fn + θFn+1} (11.28)

2. Form the right-hand-side of the PPE, solve for λ,

Kpλ = D (11.29)

3. Update the pressure

pn+1 = pn +
1

θ∆t
λ (11.30)

Note that testing over the last 20 years or so has indicated that using
θ = 1/2 to update the pressure can lead to temporal oscillations in the
pressure. For this reason, we use θ = 1 in the implementation.

4. Project the cell-centered velocities

vn+1 = v∗ − 1
ρ

Bλ (11.31)

5. Compute face gradients and project the face-centered velocities

v f = v∗f −
1
ρ f

((B)λ) f · n (11.32)

6. Repeat steps 1 - 5 until the termination time is reached
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Pressure/Lagrange-Multiplier Gradients

The pressure and Lagrange-multiplier gradients are computed using
the uniform-strain B-matrix associated with the element – currently the
HEX8, TET4, PYR5 and WEDGE6 elements. The B-matrix is optionally
formed and stored at the element-class level. The pressure gradient
force contribution to the momentum equations is computed as

Fe = ∆t
Nnpe

∑
I

Be
I pe

IΩ
e (11.33)

where 1 ≤ I ≤ Nnpe.
Given the element-level gradient, face gradients are currently com-

puted using a smoothing operation that spans the elements attached
to dual-edges as neighbors. The elements in the neighbor list include
those attached by dual-edges to the vertices of a given dual-edge where
the gradient is desired. The smoothing process is volume-weighted,
i.e.,

(Bλ) f =
∑Nnbr

i (Beλ Ωe)i Ωi

∑Nnbr
i Ωi

(11.34)

Dual-Edge Interpolation

The calculation of dual-edge quantities arises in a number of places
in the hybrid projection algorithm. This process can be viewed as a
projection onto a Galerkin basis using a 1-D mesh as shown in Figure
11.1. It has been found that an inverse-distance weighted interpolation
procedure provides more accurate face values for general unstructured
grids.

The data at points a and b are assumed to be known cell-averaged
values. An inverse-distance weighted interpolation to calculate the
face value at f . For a generic variable, φ, this is written as

φ f =
φahe

b + φbhe
a

(he
a + he

b)
(11.35)

Alternatively, this can be written as

φ f = ξaφa + (1− ξa)φb (11.36)

where

ξa =
hb

ha + hb (11.37)

For convenience, the value of ξa is stored in the dual-edge data
structure DualEdge in the Hydra.

 

ha 

 

hb 

 

Figure 11.1: Dual-edge grid for edge
projection.
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Dual-Edge Velocities and Divergence

The implementation of the P2 algorithm relies on the so-called “co-
velocity” approach where dual-edge velocities are made divergence-
free and used for advection. This is an extremely important concept
as it enables the incompressible flow solver to be easily extended to
perform volume-tracking for multi-fluid simulations.

The calculation of the dual-edge velocities proceeds as follows. For
physical domain boundaries, the process may be thought of as a sym-
metric mirror of the velocities in Ω followed by the calculation of the
edge velocity as

v f =
1
2
(
v1 + vg

)
(11.38)

Here, the factor of 1/2 factor is valid since the boundary ghosts receive
data from the symmetric mirror at a location that is twice the distance
from the element centroid to the boundary. Here, g identifies the ghost
data, and d is the normal distance from the element centroid to the
element boundary.

Figure 11.2: Edge velocity interpolation.

Alternatively, this can be thought of as extrapolation to the bound-
ary edges as v f = v1.

Where Dirichlet velocity boundary conditions are imposed, the ghost
data is specified by the prescribed velocity boundary condition.

Figure 11.3: Edge velocity extrapolation.

For domain-based parallelism, it’s necessary to account for data in
the sense of the overlapping elements or ghost elements. Edges with
a vertex containing ghost data are referred to as REAL_GHOST. The
REAL_GHOST data is populated in buffers by a swap communication
before the external dual-edge velocities are computed. For the edges
attached to vertices with REAL_GHOST data, the edge interpolation
outlined in §11.2 is used. As a reminder, the interpolation factors are
pre-computed and stored in the dual-edge data structure.

Figure 11.4: Overlapping “ghost” ele-
ments for parallel calculations.

Once all the data attached to external edges has been constructed,
the dual-edge velocities are computed as

v f = v f · n ∀ external edges (11.39)

After the external dual-edge velocities have been computed with
the prescribed boundary conditions inserted, the dual-edge velocities
associated with internal edges are computed using the interpolation
outlined in §11.2.

v f =
[
ξv1 + (1− ξ)v2

]
· n (11.40)

Note that the unit normal for each dual edge is also conveniently
stored in the dual-edge data structure DualEdge. All of the dual-edge
velocities are stored in the DUALEDGE_VEL data index.

Figure 11.5: Edge normal velocities on
internal regions.
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The dual-edge velocities can also be used to compute the natural
form of the divergence computed as

div(v)e =
1

Ωe

Nedge

∑
i

v fi
Γi (11.41)

where Nedge is the number of dual-edges connected to a given ele-
ment.

The dual-edge velocities are also used to compute the source terms
for the pressure-Poisson problem in Eq.(11.25).

Advection Treatment

The advection in uses the basic flux function outlined in §8.2. For ex-
plicit advection, the treatment is obvious. Several minor modifications
to the explicit advection are required for volume-tracking in multi-
fluid applications. The explicit advection is conditionally stable.

The implicit advection also uses the flux function outlined in §8.2,
but treats the dependent (advected) variables implicitly. For scalar
transport equations, this method provided unconditional stability. How-
ever, for the momentum equations, a sharp stability is not available.
Operational experience indicates that the upper stability range is on
the order of CF = 20 to CFL = 40.

Time-Step Estimation

The time-step estimation makes use of multiple characteristic element
dimensions and a centroid velocity that is projected onto the relevant
length scales. A minimum over all possible length and velocity scale
choices determine the acceptable time-step size.

For the explicit advection algorithm, a CFL ≤ 1 is required. For
both implicit and explicit advection, a fixed CFL time-integrator may
be used that bounds the CFL number at an appropriate level.

Start-up Procedure

The incompressible flow solver uses a start-up procedure that guaran-
tees that the solvability conditions discussed in Chapter 3 are met. This
guarantees that a well-posed incompressible Navier-Stokes problem is
defined regardless of the prescribed initial and boundary conditions.
This procedure is also required to insure that the solution to index-
1 DAE’s via the projection method produce solutions identical to the
those for the index-2 DAE’s, i.e., the fully-coupled velocity-pressure
system.

In addition to the calculation of a suitable initial velocity field that
satisfies the boundary conditions, and is divergence-free, an initial
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a) b)

c) d)

Figure 11.6: Elements with centroid ve-
locity and characteristic dimensions.

pressure is required that is consistent with the initial velocity field
and prescribed boundary conditions.

Given a set of initial conditions and prescribed boundary condi-
tions, v̂ on ΓDv , p̂ on ΓDp, and v0(x) in Ω as shown in Fig. 11.7.

Figure 11.7: Pressure boundary condi-
tions.

The start-up procedure follows the steps below.

1. Dual-Edge Velocities

To begin, we define the initial edge-normal flux velocities v0
f . We setup

ghost data, and calculate the edge-normal velocities by interpolation
at all domain boundaries following the procedure in §11.2. This yields
dual-edge velocities, v∗f , that are in general not divergence-free.

2. RMS Divergence

Given the dual-edge “fluxing” velocities with BC’s inserted, we com-
pute ∫

Ωe
∇ · v =

∮
Γe
(v f · en)dΓ (11.42)

which is stored and referred to in the code as DIVERGENCE.

Remark 5 Formally, the volume-averaged divergence is defined as∫
Ωe
∇ · v =

1
Ωe

∮
Γe
(v f · en)dΓ (11.43)

For our purposes, Eq. (11.42) is used since it simplifies the computation of
the RMS divergence metric, and other internal quantities in the code.
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Using 1-point quadrature at the dual-edges, i.e., element-faces,∫
Ωe
∇ · v ≈∑

f
v f · enΓ f = ∑

f
v f Γ f (11.44)

the computation proceeds edge-by-edge with an assembly to vertices,
a.k.a, elements as shown below. The sign-convention for the assembly
follows the convection outlined in Chapter 8.

Figure 11.8: Dual-edge assembly from
elements 1 and 2.

(∇ · v)1 + = u f Γ f

(∇ · v)2 − = u f Γ f
(11.45)

The RMS divergence is computed as

divRMS =
1
Ω

√
∑Nel

i=1[(∇ · v)i]2

Nel
(11.46)

If the RMS divergence is larger than a user prescribed tolerance,
then the initial velocity is projected onto a div-free subspace before
proceeding.

3. Div-Free Projection

Assuming that the initial RMS divergence is too large, then a div-free
projection is performed.

We begin with the usual decomposition of the velocity into div-free
and curl-free components

v∗ = v +
1
ρ
∇λ (11.47)

Here, v0 = v∗, and

∇ · v∗ 6= 0, ∇ · v = 0 (by construction) (11.48)

Taking the divergence yields

∇ · v∗ = ∇ · 1
ρ
∇λ (11.49)

where
λ = 0 on ΓDp (11.50)

and
∂λ

∂n
= 0 (11.51)

everywhere except on ΓDp.
Starting with the usual weighted-residual form,∫

Ω
w
{
∇ · 1

ρ
∇λ

}
=
∫

Ω
w∇ · v∗ (11.52)
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where ∇ · v∗ is computed using the dual-edge velocity. Integrating by
parts, we obtain∫

Γ
w
{

1
ρ

∂λ

∂n

}
−
∫

Ω
∇w · 1

ρ
∇λ =

∫
Ω

w∇ · v∗ (11.53)

After applying the divergence theorem, the weak-form becomes∫
Ω
∇w · 1

ρ
∇λ =

∫
Γ

w
{

1
ρ

∂λ

∂n

}
−
∫

Ω
w∇ · v∗ (11.54)

This is simply a pressure-Poisson equation (PPE) for the Lagrange
multiplier.

Alternatively, the PPE problem may be formulated as∫
Ω
∇w · 1

ρ
∇λ =

∫
Γ

w
{

1
ρ

∂λ

∂n

}
−
∫

Ω
w∇ · v∗

=
∫

Γ
w
{

1
ρ

∂λ

∂n

}
−
∫

Ω
∇ · (wv∗) +

∫
Ω

v∗ · ∇w

=
∫

Γ
w
{

1
ρ

∂λ

∂n

}
−
∫

Γ
wv∗f · n f +

∫
Ω

v∗ · ∇w

(11.55)

Here, the dual-edge velocities are used directly on the external bound-
ary integral.

In a discrete form, the PPE problem becomes

Kλ = D(v) (11.56)

After solving the PPE problem for λ, we project both the element
and dual-edge velocities. Using the Helmholtz decomposition, and
knowing v∗f and λ, we can compute the div-free velocity as

v f = v∗f −
1
ρ f
∇ f λ · n f (11.57)

In the fully-discrete sense, we have have λ at nodes, and need to
compute ( 1

ρ f
∇ f λ) at the dual-edges. We follow the procedure outlined

in §11.2 to compute the dual-edge gradients, i.e., face-gradients, for the
projection. The dual-edge velocities are projected as

v f = v∗f −
1
ρ f

(Bλ) f · n f (11.58)

where the edge-density used in the projection of the dual-edge velocity
is computed as

ρ f = ξρa + (1− ξ)ρb (11.59)

and (Bλ) f is computed using Eq. (11.34).

Remark 6 In the future, the calculation of the dual-edge density many need
to be modified for volume-tracking in multi-fluid calculations. In this case, it
has been found that using a harmonic average for the density performs well,
although there is no single unique density estimate.
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Following the projection of the dual-edge velocities, the prescribed
Dirichlet velocities are injected in the dual-edge velocity to insure that
the final div-free dual-edge velocities exactly match the prescribed ve-
locities.

Finally, the element-velocity is projected onto the div-free subspace
as

v = v∗ − 1
ρ
(∇λ)e (11.60)

Currently, a simple average of the dual-edge gradient is used, although
other choices should be explored.

(∇λ)e =
1

Nepe

Nepe

∑
i=1

(Bλ)i
f (11.61)

4. Initial Pressure

Once the div-free velocities have been obtained, an initial pressure is
computed that is consistent with the initial and boundary conditions.
We begin by writing the momentum in terms of acceleration.

ρa = f +∇ ·
[
µ(∇v +∇vT)

]
−∇ · (ρvv)−∇p (11.62)

Using the div-free velocity, v0,

a0 =
1
ρ

{
f +∇ · [µ(∇v0 + (∇v0)T)]−∇ · (ρv0v0)−∇p0

}
(11.63)

Now, since ∇ · v0 = 0, then, ∇ · a0 = 0, and we can form the con-
tinuous PPE for p0.

∇ · 1
ρ
∇p0 =

1
ρ
∇ ·
{

f +∇ · [µ(∇v0 + (∇v0)T)]−∇ · (ρv0v0)

}
(11.64)

For convenience, we define a “partial acceleration”

ã =
1
ρ

{
f +∇ · [µ(∇v0 + (∇v0)T)]−∇ · (ρv0v0)

}
(11.65)

so that the continuous PPE may be written as

∇ · 1
ρ
∇p0 = ∇ · ã, (11.66)

where p0 = p̂0 on ΓDp, and
∂p
∂n

= 0 on ΓN .
Using the DG/FVM formalism, we compute the partial acceleration

as∫
Ωe

ρã =
∫

Ωe
f +

∫
Ωe
∇ · [µ(∇v0 + (∇v0)T)]−

∫
Ωe
∇ · (ρv0v0) (11.67)
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For the initial pressure, all that is required is the acceleration, so it is
OK to just use the “donor-cell” approximation for the advective terms.
However, the dual-edge velocity gradients and viscosity are required.

ã = f +
1

ρV ∑
f

µ(∇v0 + (∇v0)T) f · n f Γ f −
1

ρV ∑
f
(ρv0)v0

f Γ f (11.68)

With the partial acceleration in hand, dual-edge accelerations are
computed following the same procedure outlined above for the dual-
edge velocities. For boundaries where a time-dependent velocity is

prescribed, then we impose ã f =
∂v
∂t

otherwise, ã f = 0.
In order to compute the pressure, it’s necessary to solve the PPE for

the initial pressure. Once again using the finite element method, the
weak form becomes∫

Ω
w
{
∇ · 1

ρ
∇p0

}
=
∫

Ω
w(∇ · ã)∫

Ω

{
∇w · 1

ρ
∇p0

}
=
∮

Γ
w
(

1
ρ

∂p
∂n

)
−
∫

Ω
w(∇ · ã)

(11.69)

where (∇· ã) is just a source term that is piecewise constant for each el-
ement and can be computed in the same way as the divergence above.

Similar to the projection step, we use following formulation for the
PPE because it tends to produce sharper pressures.∫

Ω
∇w · 1

ρ
p0λ =

∫
Γ

w
{

1
ρ

∂p0

∂n

}
−
∫

Ω
w∇ · ã

=
∫

Γ
w
{

1
ρ

∂p0

∂n

}
−
∫

Ω
∇ · (wã) +

∫
Ω

ã · ∇w

=
∫

Γ
w
{

1
ρ

∂p0

∂n

}
−
∫

Γ
wã f · n f +

∫
Ω

ã · ∇w

(11.70)

This leads to a linear system of equations, Kp0 = D(ã). Solving for
p0, we have the initial pressure and velocities, v0, v0

f , and are ready to
start time-marching.

Porous Media Flow

Porous media flows represent a wide variety of engineering, geologi-
cal, and biomedical applications. Many of these applications require
the knowledge of the flow field within a porous medium in an “aver-
aged” sense. In order to obtain the averaged flow, the Navier-Stokes
equation along with any transport equations that are applicable (tem-
perature, species etc.) are spatially smoothed to obtain continuum
equations that are valid everywhere. The most common forms of
smoothing employ volume-averaging (see,[Whitaker, 1999]) and ho-
mogenization techniques. In the present formulation, the volume-
averaged equations are used to solve the porous media equations.
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Volume Averaging

Let ψ denote a generic scalar quantity. Some averages are defined on
ψ as follows that are used in the volume-averaging procedure

• Superficial phase average:

〈ψ〉 = 1
V

∫
Vβ

ψ dV (11.71)

• Intrinsic phase average:

〈ψ〉β =
1

Vβ

∫
Vβ

ψ dV (11.72)

• Relation between averages:

〈ψ〉 = ε〈ψ〉β (11.73)

where,

ε =
Vβ

V
, (11.74)

is the porosity of the medium.

Darcy-Brinkman-Forchheimer Model

Using a volume-averaging approach, the averaged form of the mass
and momentum conservation equations for a fluid-saturated “con-
stant” porosity medium that takes into account the presence of solid
boundaries (Brinkman correction [Brinkman, 1949]) and inertial effects
(Forchheimer correction) are given as follows [Khaled and Vafai, 2003,
Nithiarasu et al., 2000].

Mass conservation:
∇ · 〈v〉 = 0. (11.75)

Momentum conservation:

ρ

ε

(
∂〈v〉

∂t
+

1
ε
〈v〉 · ∇〈v〉

)
= −∇〈p〉β +∇·µβ∇〈v〉−

µ

K
〈v〉− ρCF√

K
|〈v〉|〈v〉

(11.76)
Here, µβ is the Brinkman effective viscosity, CF is the Forchheimer co-
efficient, and K is the permeability tensor. The Forchheimer coefficient
CF is expressed as

CF =
1.75√
150ε3

. (11.77)

The third and fourth term on the R.H.S. of Eq.11.76 represent the
Darcy and Forchheimer drag terms. These terms are treated as mo-
mentum “sink” (negative source) terms in the present implementation.

Remark: The factor
1.75√

150
is calculated internally within the code.
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In Eqs. 11.75 and 11.76, the superficial average velocity, 〈v〉, is
considered in the derivation because of its solenoidal characteristic.
However, an intrinsic average of pressure, 〈p〉β, is preferred because
it more closely resembles the pressure that one could measure or the
pressure that one could impose as a boundary condition [Ochoa-Tapia
and Whitaker, 1995a].

A formal and rigorous volume averaging procedure (see, [Ochoa-

Tapia and Whitaker, 1995a]) yields µβ =
µ

ε
. Substituting for µβ in

Eq.11.76, we get the following equation:

ρ

ε

(
∂〈v〉

∂t
+

1
ε
〈v〉 · ∇〈v〉

)
= −∇〈p〉β +∇· µ

ε
∇〈v〉−µK−1〈v〉− ρCFK−

1
2 |〈v〉|〈v〉.

(11.78)

Interface boundary conditions

The boundary conditions at the interface between a pure fluid and ho-
mogeneous porous medium are provided below [Betchen et al., 2006].

Continuity of velocity:

〈v〉|Porous = v|Fluid (11.79)

Continuity of pressure:

〈p〉β|Porous = p|Fluid (11.80)

Continuity of normal stress:

(n · n · 〈σ〉)|Porous = (n · n · σ)|Fluid (11.81)

Continuity of shear stress:

(n · t · 〈σ〉)|Porous = (n · t · σ)|Fluid (11.82)

where,

〈σij〉|Porous = −〈p〉βδij + µβ

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
, (11.83)

and

σij|Fluid = −pδij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
. (11.84)

Continuity of pressure and normal stresses as given by Eqs.11.80

and 11.81 together with the definitions of stress tensors given by Eqs.11.83

and 11.84 implies the continuity of viscous normal stresses.

µ

(
∂ui
∂xj

+
∂uj

∂xi

)
= µβ

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
. (11.85)
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Remark:
Some justifications and pitfalls of the assumption of dropping ε in

the transport equation and boundary conditions are given below.

1. Viscous term approximation: For porous media problems coupled to
homogeneous fluid regions, setting µβ = µ causes the flow rate
through the pure-fluid domain to be spuriously high due to the
overestimation of the interfacial velocity [Tan and Pillai, 2009].

2. Advective term approximation: It has been shown [Vafai and Tien,
1981] that for many practical problems, the magnitude of the ad-
vective term responsible for boundary layer growth is negligible
beyond a very small developing region near the porous-pure fluid
interface. Hence, any approximation to this term is considered
“higher order”. Inertial contributions are mainly accounted through
the Forchheimer correction.

3. Transient term approximation: The neglect of porosity in the transient
terms is strictly valid only for steady state flows and is not thor-
oughly justified for highly transient dynamics.

4. Continuity of interface stresses: In the porous medium, since the solid
phase shares the total stress with the fluid, the fluid stresses may
not be continuous across the interface between a “homogeneous-
fluid” region and the fluid in the porous medium. Jump bound-
ary conditions may be prescribed across the interface which has
been considered theoretically and experimentally in [Ochoa-Tapia
and Whitaker, 1995a], [Ochoa-Tapia and Whitaker, 1995b], [Ochoa-
Tapia and Whitaker, 1998] and analyzed in [Alazmi and Vafai, 2001].
However, the implementation of interface stress jump conditions
have been successful only for highly simplified geometries. Recent
numerical works that have utilized such jump boundary conditions
include [Tan and Pillai, 2009], [Yu et al., 2009], [Yu et al., 2010] and
[Chen et al., 2008].

Permeability Estimation

An estimation of the macroscopic permeability tensor of the porous
medium, K, is critical to solving the averaged equations for fluid flow.
Simpler models/correlations that provide a good estimate of the per-
meability values are often sought. Such models need to consider
the dependence of the permeability on the geometry of the porous
medium, the orientation of the pores/fibers with respect to the flow,
and the porosity ε of the medium. For many engineering applications,
the permeability tensor can be assumed isotropic that is characterized
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by a single scalar, K. A typical correlation that is often used in engi-
neering calculations for estimating the permeability K is the Carman-
Kozeny relation. This relates K to the porosity ε and is given by,

K =
r2

f

4kkc

ε3

(1− ε)2 , (11.86)

where, kkc represents the Carman-Kozeny constant and r f represents
the average radius of the porous particles/fibers.

Turbulence and Porous medium

The current code implementation does not include volume-averaged
equations for the turbulent flows within the porous medium. While
the turbulence option can be turned on for a porous region, the macro-
scopic equations applicable only for a pure-fluid region are alone solved.
The effects of the presence of solid boundaries in the porous region on
the production and destruction of turbulence are not taken into ac-
count. Hence, care must be taken while activating a turbulence model
within a porous region and also interpreting the obtained results.

Spalart-Allmaras Model

The implementation details of the Spalart-Allmaras model are described
in §6.3.

The Reynolds-stress is approximated using the Boussinesq hypoth-
esis as

−vivj = 2νTSij (11.87)

where,

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(11.88)

S =
√

2SijSij (11.89)

Rij =
1
2

(
∂vi
∂xj
−

∂vj

∂xi

)
(11.90)

Sr =
√

2RijRij (11.91)

and the over-bar indicating that the velocities are Reynolds-averaged
has been dropped for convenience.
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For our purposes, we write the model as

ρ
∂ν̃

∂t
+∇ · (ρvν̃) = ρCb1Sν̃− ρCw1 fw

(
ν̃

d

)2

+ ρ
1 + Cb2

σ
∇ · (ν + ν̃)∇ν̃

− ρ
Cb2
σ

(ν + ν̃)∇ · ∇ν̃

(11.92)

where,

fw = g
[

1 + C6
w3

g6 + C6
w3

] 1
6

(11.93)

g = r + Cw2(r6 − r) (11.94)

r =
νT

Sκ2d2 (11.95)

Using the DG/FVM formalism, the model equation is

∫
Ωe

{
ρ

∂ν̃

∂t
+∇ · (ρvν̃) dΩ =

∫
Ωe

ρCb1Sν̃ dΩ−
∫

Ωe
ρCw1 fw

(
ν̃

d

)2

dΩ

+
∮

Γe

1 + Cb2
σ

[(ν + ν̃)∇ν̃]|eΓ · n dΓ

−
∮

Γe

Cb2
σ

(ν + ν̃)|Ωe∇ν̃ · n dΓ

(11.96)

Here, the evaluation of viscosity and Spalart-Allmaras variable in the
diffusive terms must be handled carefully to avoid numerical instabil-
ities.

In operator form, the fully-discrete equation using forward-Euler
time integration are

M
{

ν̃n+1 − ν̃n

∆t

}
+ A(ρ, v)ν̃n = Knν̃n + Pnν̃n − Dnν̃n (11.97)

and with backward-Euler, the equation is

M
{

ν̃n+1 − ν̃n

∆t

}
+ A(ρ, v)ν̃n = Kν̃n+1 + Pn+1ν̃n+1 − Dn+1ν̃n+1

(11.98)
where M is a diagonal Nel × Nel matrix where Mii = ρΩeδii,

Kν̃ =
∮

Γe

1 + Cb2
σ

[(ν + ν̃)∇ν̃]|eΓ · n dΓ−
∮

Γe

Cb2
σ

(ν + ν̃)|Ωe∇ν̃ · n dΓ

(11.99)
and the production and dissipation terms written as

Pν̃ = ρCb1Sν̃Ωe (11.100)
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Dν̃ = ρCw fw

(
ν̃

d

)2

Ωe (11.101)

Taking a linear-combination of forward and backward-Euler, i.e.,
the θ-method, becomes[

M− θ∆tK + θ∆t(Dn+1 − Pn+1)
]
ν̃n+1 =[

M + (1− θ)∆tK + (1− θ)∆t[Pn − Dn]
]
ν̃n − ∆tA(ρ, v)ν̃n

(11.102)

Equation (11.102) is non-linear in ν̃, and requires linearization in or-
der to complete the implementation. We follow the suggestions in the
original Spalart-Allmaras paper [Spalart and Allmaras, January 1992],
and apply their positivity-preserving algorithm here.

Beginning with the production and dissipation terms, we let

Pn+1ν̃n+1 = Pnν̃n+1 + ν̃n ∂P
∂ν̃

n
∆ν̃ (11.103)

and

Dn+1ν̃n+1 = Dnν̃n+1 + ν̃n ∂D
∂ν̃

∆ν̃ (11.104)

where ∆ν̃ = (ν̃n+1 − ν̃n).
The production/dissipation operators and their derivatives are

Pn = ρCb1S̃nΩe (11.105)

Dn = ρCw1 fw
ν̃n

d2 Ωe (11.106)

∂P
∂ν̃

= ρCb1
∂S̃n

∂ν̃
Ωe (11.107)

∂D
∂ν̃

=

[
ρCw1

∂ fw

∂ν̃

ν̃n

d2 + ρCw1 fw
1
d2

]
Ωe (11.108)

where

S̃ = S +
ν̃

κ2d2 fv2 (11.109)

and
∂S̃
∂ν̃

=

[
fv2

κ2d2 +
ν̃

κ2d2
∂ fv2

∂ν̃

]
(11.110)

where

fv1 =
χ3

χ3 + C3
v1

(11.111)

fv2 = 1− χ

1 + χ fv1
(11.112)
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Substituting in Eq. (11.102), collecting terms, and rearranging yields[
Mn − θ∆tKn + θ∆t(Dn − Pn

)
]
ν̃n+1 =[

Mn + (1− θ)∆tKn]ν̃n − ∆tA(ρ, v)ν̃n

− ∆t(Dn − Pn)ν̃n + θ∆t(Dn − Pn
)ν̃n

(11.113)

where

(Dn − Pn
) = pos{Dn − Pn}+ pos

{∂D
∂ν̃
− ∂P

∂ν̃

}
ν̃ (11.114)

The calculation of the linearized terms used in Eq. (11.113) proceeds
as follows.

1.
χ =

ν̃

ν
=

ν̃ρ

µ
(11.115)

2. (
1

κ2d2

)
=

(
1

κ2d2 + εdbl

)
(11.116)

3.
Sr =

√
2RijRij (11.117)

4.

fv1 =
χ3

χ3 + C3
v1

(11.118)

5.
fv2 = 1− χ

1 + χ fv1
(11.119)

6.

Sa = Sr + ν̃ fv2

(
1

κ2d2

)
(11.120)

7.

r =
ν̃

Sa

(
1

κ2d2

)
; i f (r > 10) r = 10 (11.121)

8.
g = r(1− Cw2) + Cw2r6 (11.122)

9.

fw = g
[

1 + C6
w3

g6 + C6
w3

] 1
6

(11.123)

10.
∂ fv2

∂ν̃
=
−χ6 + 3C3

v1χ4 − 2C3
v1χ3 − C6

v1
ν(χ4 + χ3 + C3

v1)
2

(11.124)

11.
∂Sa

∂ν̃
=

(
1

κ2d2

)(
fv2 + ν̃

∂ fv2

∂ν̃

)
(11.125)
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12.
∂r
∂ν̃

=
r
ν̃

(
1− ν̃

Sa

∂Sa

∂ν̃

)
(11.126)

13.
∂g
∂ν̃

=
∂r
∂ν̃

[1 + Cw2(6r5 − 1)] (11.127)

14.
∂ fw

∂ν̃
=

fw

g
∂g
∂ν̃

(
C6

w3

C6
w3 + g6

)
(11.128)

15.

P = ρCb1SaΩe (11.129)

16.

D = ρCw1 fwν̃Ωe 1
d2 (11.130)

17.
∂P
∂ν̃

= ρCb1
∂Sa

∂ν̃
Ωe (11.131)

18.
∂D
∂ν̃

= ρΩe 1
d2

(
Cw1ν̃

∂ fw

∂ν̃
+ Cw1 fw

)
(11.132)

19.

{D− P} = D− P (11.133)

20.

{D− P} = pos(D− P) + pos
(

∂D
∂ν̃
− ∂P

∂ν̃

)
ν̃ (11.134)

The Smagorinsky Model

The formulation of the Smagorinsky model is described in §6.4. The
turbulent viscosity is computed as

νT = µsgs/ρ = (Cs∆)2S with S =
√

2SijSij (11.135)

In Eq. (11.135) ∆ = V1/3 where V is the cell volume, while Sij is the
symmetric part of the filtered velocity gradient tensor:

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(11.136)

The inner product of Sij computes the shear rate, S.
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The WALE Model

The formulation of the wall-adapted large-eddy (WALE) model is de-
scribed in §6.4. The turbulent viscosity is computed based on both
the filtered-scale shear, Sij, and the square of the filtered-scale velocity
gradient tensors, gij,

νT = (CW∆)2
(Sd

ijSd
ij)

3/2

(SijSij)5/2 + (Sd
ijSd

ij)
5/4

(11.137)

where ∆ = V1/3 with V the cell volume and

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
g2

kkδij with gij =
∂vi
∂xj

(11.138)

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(11.139)

In the following the over-bars are dropped for convenience. For
every cell the following operations are performed to compute the cell
turbulent viscosity:

1. Compute the symmetric part of the velocity gradient tensor: Sij

Sij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
=

1
2
(gij + gji) (11.140)

2. Compute the square of the velocity gradient tensor: g2
ij

g2
ij = gikgkj (11.141)

3. Compute the symmetric deviator of the square of the velocity gra-
dient: Sd

ij

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
δijg2

kk (11.142)

4. Compute the enumerator of µT : OP1

OP1 = (Sd
ijSd

ij)
3/2 (11.143)

5. Compute the denominator of µT : OP2

OP2 = (SijSij)
5/2 + (Sd

ijSd
ij)

5/4 (11.144)

6. Compute the cell turbulent viscosity: µT = ρνT

µT = ρ(CW∆)2 OP1

OP2

(11.145)





12 Arbitrary Lagrangian-Eulerian Formulation

This chapter outlines the arbitrary Lagrangian-Eulerian formulation
for the incompressible flow solver in the Hydra Toolkit.

Second-order Incremental Projection Method

Since a simplified DG/FVM formulation is used for the incompressible
flow solver, a natural starting point is the master balance equation for
linear momentum, Eq.(5.66), which is repeated here for convenience.

d
dt

∫
Ωx

ρv +
∮

Γx
ρv(v− vm) · nx = −

∫
Ωx
∇p +

∮
Γx

τ · nx +
∫

Ωx
f (12.1)

Using rationale similar to Förster, et al. [C. Forster and Ramm,
2007], it is assumed that xn, xn+1 are known at time levels t and t + ∆t.
The reference configuration is the domain at “t”, Ωt. The current con-
figuration is Ωt+∆t. The relevant variables for the two configurations
are outlined in Table 12.1.

Reference Current
X x
ΩX = Ωt; Γt; nt Ωx = Ωt+∆t; Γt+∆t; nt+∆t

xn; ΓX ; nX xn+1; Γx; nx

vn vn+1

∇X ∇x

Table 12.1: Variable definitions for refer-
ence and current configurations.

For this discussion, and the initial implementation, we treat the ad-
vection explicitly for now, and apply the usual forward-Euler/backward-
Euler θ-weighting. With this assumption, we approximate the rate-
term as

d
dt

∫
Ωx

ρv ≈ ρvn+1Ωn+1 − ρvnΩn

∆t
(12.2)

Proceeding as in §11.2, we form the balance equations using a forward-
Euler time-integrator, then backward-Euler, and take the weighted
sum.
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The forward-Euler discretization yields

ρvn+1Ωn+1 − ρvnΩn

∆t
+
∮

Γe
t

ρvn(v f − vm f )|Γe
t
=

−
∫

Ωe
t

∇X pn +
∮

Γe
t

µ∇Xvn · nt +
∫

Ωe
t

fn (12.3)

and the backward-Euler method yields

ρvn+1Ωn+1 − ρvnΩn

∆t
+
∮

Γe
t

ρvn(v f − vm f )|Γe
t
=

−
∫

Ωe
t+∆t

∇x pn+1 +
∮

Γe
t+∆t

µ∇xvn+1 · nt+∆t +
∫

Ωe
t+∆t

fn+1 (12.4)

Weighting the forward-Euler equation by (1− θ) and the backward-
Euler equation by θ, summing and collecting terms yields

ρvn+1Ωn+1− θ∆t
∮

Γe
x

µ∇xvn+1 ·nx = ρvnΩn−∆t
∮

Γe
X

ρvn(v f − vm f )
∣∣
Γe

X

+ (1− θ)∆t
∮

Γe
X

µ∇Xvn · nX−

∆t
∫

Ωe
X

∇X pn + θ∆t
∫

Ωe
X

∇X pn − θ∆t
∫

Ωe
x

∇x pn+1+

∆t(1− θ)
∫

Ωe
X

fn + ∆tθ
∫

Ωe
x

fn+1 (12.5)

Introducing the divergence constraint in the current configuration,

∇x · vn+1 = 0 (12.6)

and the velocity decomposition,

ρv∗ = ρvn+1 +∇xλ (12.7)

we obtain the PPE in the current configuration, Ωx, which we will
solve for λ

∇x ·
1
ρ
∇xλ = ∇x · v∗ (12.8)

In the pure-Eulerian frame, our formulation leads to,

θ∆t
∫

Ωe
∇pn − θ∆t

∫
Ωe
∇pn+1 = −

∫
Ωe
∇λ (12.9)

which permits the definition of the Lagrange multiplier, λ = θ∆t(pn+1−
pn) and corresponding pressure update pn+1 = pn + λ

θ∆t .
For the ALE formulation, we have the following relationship from

Eq. (12.5)

θ∆t
∫

Ωe
X

∇X pn − θ∆t
∫

Ωe
x

∇x pn+1 (12.10)
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In order to preserve the computational simplicity of the projection
method in the Eulerian frame, we wish to develop a strategy to solve
the PPE in the current configuration, and maintain the simple defini-
tion of the Lagrange multiplier and pressure update.

Using a push-forward from ΩX to Ωx, where

dΩx = JdΩX

∇x(·) = ∇X(·)F−1
(12.11)

we want the ∇p’s in Ωx in order to define λ, so the integral pressure-
force difference becomes

θ∆t
{ ∫

Ωe
X

∇X pn−
∫

Ωe
x

∇x pn+1
}

= θ∆t
{ ∫

Ωe
X

∇X pnF−1 JdΩX−
∫

Ωe
x

∇pn+1
}

(12.12)
The pressure gradient in the reference configuration, ΩX is

∇X p =

{
∂p
∂X

,
∂p
∂Y

,
∂p
∂Z

}T

(12.13)

Pushing forward yields

∇X pF−1 =

(
∂p
∂X

∂p
∂Y

∂p
∂Z

)


∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z


=



∂p
∂X

∂X
∂x

+
∂p
∂Y

∂Y
∂x

+
∂p
∂Z

∂Z
∂x

∂p
∂X

∂X
∂y

+
∂p
∂Y

∂Y
∂y

+
∂p
∂Z

∂Z
∂y

∂p
∂X

∂X
∂z

+
∂p
∂Y

∂Y
∂z

+
∂p
∂Z

∂Z
∂z



T

= ∇x p

(12.14)

This permits simplification of the integral pressure difference using∫
Ωe

x

∇X(·)F−1 J =
∫

Ωe
x

∇x(·) (12.15)

so that

θ∆t
{ ∫

Ωe
X

∇X pn −
∫

Ωe
x

∇x pn+1
}

= θ∆t
∫

Ωe
x

∇(pn − pn+1) (12.16)

which permits λ = θ∆t(pn+1 − pn).
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Revised P2 λ-Construction

A more rigorous approach to the derivation of the incremental pro-
jection method is outlined here. Starting with Eq. (12.5), we add and
subtract θ∆t

∫
Ωx
∇x pn. This yields

ρvn+1Ωn+1− θ∆t
∮

Γe
x

µ∇xvn+1 ·nx = ρvnΩn−∆t
∮

Γe
X

ρvn(v f − vm f )
∣∣
Γe

X
+

(1− θ)∆t
∮

Γe
X

µ∇Xvn · nX−

(1− θ)∆t
∫

Ωe
X

∇X pn − θ∆t
∫

Ωe
x

∇x pn + θ∆t
∫

Ωe
x

∇x(pn − pn+1)+

∆t(1− θ)
∫

Ωe
X

fn + ∆tθ
∫

Ωe
x

fn+1 (12.17)

Now, as before, we define λ = θ∆t(pn+1 − pn) such that the pres-
sure update is written as

pn+1 = pn +
λ

θ∆t
(12.18)

Now, pull back
∫

Ωe
x
∇x pn to X using dΩx = JdΩX , and ∇x pn =

∇X pnF−1. So, the level “n” pressure gradient terms become

I = −(1− θ)∆t
∫

Ωe
X

∇X pn − θ∆t
∫

Ωe
X

∇X pnF−1 JdΩX

= −∆t
∫

Ωe
X

{
(1− θ)∇X pn + θ∇X pnF−1 J

}
dΩX

(12.19)

Thus, for θ = 0, i.e., forward-Euler

I = −∆t
∫

ΩX

∇X pndΩX (12.20)

In the limit when x = X, i.e., at start-up, F = I, and J = 1, so

I = −∆t
∫

ΩX

∇X pndΩX (12.21)

Using this result in the the momentum equation where

d
dt

∫
Ωx(t)

ρv =
∫

Ωx
ρvn+1 −

∫
ΩX

ρvn (12.22)
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yields∫
Ωe

x

ρvn+1 − θ∆t
∮

Γe
x

µ∇xvn+1 · nx = ∆t
{
(1− θ)

∫
Ωe

X

fn + θ
∫

Ωe
x

fn+1
}

− ∆t
∮

Γe
x

ρvn(v f − vm f )
∣∣
Γe

x

+
∫

Ωe
X

ρvn + (1− θ)∆t
∮

Γe
X

µ∇Xvn · nX

− ∆t
∫

Ωe
X

{
(1− θ)∇X pn + θ∇X pnF−1 J

}
− θ∆t

∫
Ωe

x

∇x(pn+1 − pn)

(12.23)

Now, use Helmholtz decomposition

ρv∗ = ρvn+1 +∇xλ (12.24)

with the objective that ∇ · vn+1 = 0, thus∫
Ωx

ρvn+1 =
∫

Ωx
(ρv∗ −∇xλ) (12.25)

Using Eq. (12.25) in Eq. (12.23) and letting λ = θ∆t(pn+1 − pn), we
make the intermediate step∫

Ωe
x

ρv∗ −
∫

Ωe
x

∇xλ− {· · · } = {· · · }

− θ∆t
∫

Ωe
x

∇x(pn+1 − pn)∫
Ωe

x

ρv∗ − θ∆t
∫

Ωe
x

∇x(pn+1 − pn)− {· · · } = {· · · }

− θ∆t
∫

Ωe
x

∇x(pn+1 − pn)

(12.26)

Letting, ∮
Γe

x

µ∇xvn+1 · nx ≈
∮

Γe
x

µ∇xv∗ · nx (12.27)

which simplifies to
∫

Ωx
∇x · ∇x(∇xλ) = 0, which only holds in Ωx.

Strictly speaking this is a statement of commutativity of the divergence
operator and the Laplacian which is true in the interior of Ωx.

Therefore, the momentum equation in integral form becomes∫
Ωe

x

ρv∗ − θ∆t
∮

Γe
x

µ∇xv∗ · nx =
∫

Ωe
X

ρvn − ∆t
∮

Γe
x

ρvn(v f − vm f )
∣∣
Γe

x
+

(1− θ)∆t
∮

Γe
X

µ∇Xvn · nX−

∆t
∫

Ωe
X

∇X pn
[
(1− θ)I + θF−1 J

]
+

∆t(1− θ)
∫

Ωe
X

fn + ∆tθ
∫

Ωe
x

fn+1 (12.28)
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Geometric Conservation Law

Now, we check that geometric conservation law (GCL) is still satis-
fied. This requires that a constant solution be reproduced exactly and
independent of domain/mesh motion.

We assume that

∇ · vn = ∇ · vn+1 = 0

f = 0

v = const

∇p = cosnt

pn = pn+1

(12.29)

Using Eq.(12.5) for vn = vn+1 = const, gradient vanish, so

ρvn+1Ωn+1 = ρvnΩn − ∆t
∮

Γe
X

ρvn(v f − vm f )
∣∣
Γe

X

− ∆t(1− θ)
∫

Ωe
X

∇X pn − ∆tθ
∫

Ωe
x

∇x pn+1
(12.30)

From the earlier analysis,∫
Ωe

X

∇X pn −
∫

Ωe
x

∇x pn+1 =
∫

Ωe
x

∇x(pn − pn+1) = 0 (12.31)

since pn = pθ. Now, for θ = 1/2 all pressure-gradient terms vanish.
As an aside, for the incompressible solver, the default is θ = 1/2.

This leaves

ρvn+1Ωn+1 = ρvnΩn − ∆t ∑
f

ρvn(v f − vm f )Γ
e
X f

(12.32)

However,
∆t(v f − vm f )Γ

e
x f

= ∆Ωn, (12.33)

where Ωn+1 = Ωn +∆Ωn, so ρvn+1Ωn = ρvn(Ωn +∆Ωn), thus vn+1 =

vn for all time. This concludes the exercise to show the GCL is pre-
served with this formulation.

ALE Formulation Comparison

As a point of reference, we compare our formulation to that proposed
by Förster, Wall and Ramm [C. Forster and Ramm, 2007].

We begin by stating the time-integrator proposed by Förster, Wall
and Ramm.

un+1 Jn+1 + θ∆tJn+1[(un+1 − un+1
G ) · ∇u− 2ν∇ · ffl +∇pn+1] =

Jn+1[θ∆tFn+1 + (1− θ)∆tu̇n + un]
(12.34)
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where u is the velocity, ffl is the strain-rate, and

J =
Ωx

ΩX
(12.35)

in our nomenclature.
Rearranging so to obtain a linear combination of forward and backward-

Euler time integrators yields.

θ

{
un+1 − un

∆t
+ (un+1 − un+1

G ) · ∇un+1 − 2ν∇ · ffln+1 +∇pn+1
}
+

(1− θ)

{
un+1 − un

∆t
+ (un − un

G) · ∇un − 2ν∇ · ffln +∇pn
}

= 0

(12.36)

This is simply a time-discrete version of Eq.(5.67) where u = v, and
Förster, et al. have implied the reference frame by the time-index, i.e.,
n and n + 1.

Start-up procedure

The start-up procedure remains the same with one exception. An ini-
tial mesh velocity may be present, and to account for it, the partial
acceleration becomes

ρΩã˜ = fΩ +
∮

Γe

{
µ(∇vo +∇voT

)
}
· n−

∮
Γe

ρvo(vo
f − vo

m f
) (12.37)

Thus the partial acceleration calculation needs to account for any initial
mesh velocity, but otherwise the initial pressure computation is not
changed. The remainder of start-up remains the same.

Time Integration

Returning to Eq. (12.28), we want to solve for v∗ keeping only the
pressure-gradient terms at tn+1[

ρΩn+1 − θ∆t
∮

Γe
x

µ∇x(·) · nx

]
v∗ =

[
ρΩn + (1− θ)∆t

∮
Γe

X

µ∇X(·) · nX

]
vn

− ∆t
∮

Γe
X

ρvn(v f − vm f )
∣∣
Γe

X

− ∆t
∫

Ωe
X

∇x pn[(1− θ)I + θF−1 J
]

∆t
[
(1− θ)

∫
Ωe

X

fn + θ
∫

Ωe
x

fn+1
]

(12.38)

Before proceeding, we define the operators used in both the refer-
ence and current configurations as shown in Table 12.2.
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Level-n: X Level-n + 1: x
Mn = ρΩn Mn+1 = ρΩn+1

Kn = −
∮

Γe
X

µ∇X(·) · nX Kn+1 = −
∮

Γe
x

µ∇x(·) · nx

Fn = fnΩn Fn+1 = fn+1Ωn+1

Bn ≡ FEM B-Matrix Kn+1
λe

=
∫

Ωe
x
∇x NI

1
ρ∇x NT

Table 12.2: Operators definition

Pressure gradient

In order to provide a convenient and efficient switch between Eulerian
and ALE, we write the pressure-gradient contribution to Eq. (12.38) as

− ∆t
∫

Ωe
X

∇x pn[(1− θ)I + θF−1 J
]
=

− ∆t
∫

ΩX

∇X pn + θ∆t
∫

ΩX

∇X pn(I − F−1 J
)

(12.39)

The deformation gradient in indicial form is

Fij =
∂xi
∂Xj

(12.40)

which is computed using the B-matrix as

Fij =



∂x
∂X

=
Nnpe

∑
k=1

BXk xk
∂x
∂Y

=
Nnpe

∑
k=1

BYk xk
∂x
∂Z

=
Nnpe

∑
k=1

BZk xk

∂y
∂X

=
Nnpe

∑
k=1

BXk yk
∂y
∂Y

Nnpe

∑
k=1

BYk yk
∂y
∂Z

=
Nnpe

∑
k=1

BZk yk

∂z
∂X

=
Nnpe

∑
k=1

BXk zk
∂z
∂Y

=
Nnpe

∑
k=1

BYk zk
∂z
∂Z

=
Nnpe

∑
k=1

BZk zk


(12.41)

The Jacobian, J = det(F), is

J =
∂x
∂X

(
∂y
∂Z

∂z
∂Z
− ∂y

∂Z
∂z
∂Y

)
+

∂x
∂Y

(
∂y
∂X

∂z
∂Z
− ∂y

∂Z
∂z
∂X

)
+

∂x
∂Z

(
∂y
∂X

∂z
∂Y
− ∂y

∂Y
∂z
∂X

)
(12.42)

The inverse deformation gradient is

F−1
ij =



∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z


(12.43)
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We use Cramer’s rule to compute the inverse. Given a 3× 3 matrix
A

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (12.44)

The cofactors of A are written as

Bij = (−1)i+j

[
· ·
· ·

]
(12.45)

B11 = (−1)1+1

[
a22 a23

a32 a33

]
B12 = (−1)1+2

[
a21 a23

a31 a33

]

B13 = (−1)1+3

[
a21 a22

a31 a32

]
B21 = (−1)2+1

[
a12 a13

a32 a33

]

B22 = (−1)2+2

[
a11 a13

a31 a33

]
B23 = (−1)2+3

[
a11 a12

a31 a32

]

B31 = (−1)3+1

[
a12 a13

a22 a33

]
B32 = (−1)3+2

[
a11 a13

a21 a23

]

B33 = (−1)3+3

[
a11 a12

a21 a22

]

(12.46)

The inverse of A is

A−1 =
1

det(A)

 B11 B21 B31

B12 B22 B32

B13 B23 B33

 (12.47)

or alternatively for the inverse deformation gradient,

F−1 =
1

det(F)

 B11 B21 B31

B12 B22 B32

B13 B23 B33

 (12.48)

Now, we need to compute

I − F−1 J =

 1 0 0
0 1 0
0 0 1

− 1
det(F)

 B11 B21 B31

B12 B22 B32

B13 B23 B33

 det(F)

(12.49)

which, after simplifying, is

I − F−1 J =

 (1− B11) −B21 −B31

−B12 (1− B22) −B32

−B13 −B23 (1− B33)

 (12.50)
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Let G = I − F−1 J so that the right-hand-side pressure gradient
terms in the momentum equation are implemented as

F∇p = −∆t{BX pnΩn}+ θ∆t{BX pnΩn}G (12.51)

Time-Integration Algorithm

Algorithm 2 ALE P2 Algorithm

The ALE algorithm relies on the reference configuration X at t (n),
and the current configuration x at t + ∆t (n+1). The data associated
with each configuration is shown in the table below. The P2 algorithm
proceeds as follows.

1. Given the interface displacements, deform the mesh to the x-configuration.
Here, δun, δun+1 are the total displacement with respect to X0.

The current configuration is

xn+1 = xo + δun+1 (12.52)

The average velocity is estimated as

vm =
xn+1 − xn

∆t
=

δu˜n+1 − δu˜∆t
(12.53)

The dual-edge mesh velocity is computed as

vm f = ∑
k
Nk
∣∣

f vmk · n f . (12.54)

The total dual-edge velocity is

v f = (vn
f − vm f ) (12.55)

and accounts for specified velocity boundary conditions as well as
the moving interface velocity conditions . The mesh-deformation
step also computes the volume Ωn+1.

2. Compute all RHS terms for all equations in X configuration, update
to xn+1, then solve the equations.

This is similar to work by Förster, et al. [C. Forster and Ramm,
2007], in which they compute v̇n and uses this in the updated con-
figuration. This approach

• Permits all objects (except Ωn+1, xn+1) to be updated once per
time increment.

• Seems most reasonable in terms of CPU and memory

• Requires storing time-derivatives or RHS for all equations being
solved.
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3. Given vn and vn
f , and vm f , solve for v∗.

[Mn+1 + θ∆tKn+1]v∗ = [Mn − (1− θ)∆tKn]vn−

∆t
∮

Γe
t

ρvn(vn
f − vm f )− ∆tBn pnΩn[(1− θ)I − θF−1 J]+

∆t[(1− θ)F˜n + θF˜n+1] (12.56)

4. Project the velocity to a div-free subspace.

(a) Form the PPE Kn+1 in xn+1 configuration.

(b) Form the PPE Rhs in xn configuration, uses vn, un
f , in xn config-

uration.

(c) CalcEdgeVel ṽn+1
f in xn+1.

(d) calcDiv()→ ∑ f ṽn+1
f Γn+1.

rmsDiv().

(e) formPPERhs in xn+1 use vn+1, ṽn+1
f , rhsc− = rhsn.

(f) Apply pressure incremental BC’s.

(g) Solve Kn+1λn+1 = δ(∇ · u).
(h) Compute ∇xλn+1, (∇xλn+1) f .

(i) vn+1
f = ṽn+1

f − 1
ρ (∇xλn+1) f .

(j) vn+1 = ṽn+1 − 1
ρ∇xλn+1.

5. Update the pressure.

Remark 7 An alternative to the algorithm above was considered where the
viscous terms are pulled-back. Consider Eq. (12.38), and assume xn+1, Ωn+1

are available. The only term requiring updated dual-edge data is Kn+1, so we
pull back to the xn configuration as

Kn+1vn+1 = −
∮

Γe
x

µ∇xvn+1 · nx (12.57)

Using Nanson’s formula Eq.(5.11)

∇xv = ∇XvF−1 (12.58)

Kn+1vn+1 = −
∮

Γe
x

µ∇Xvn+1F−1 JFTnXdΓe
X (12.59)

Now, the LHS/RHS K-operators are formed in X or reference configura-
tion. This avoids having storage for dual-edge velocities at n, n+ 1. However,
J, F−1 requires 10 · Nel words of storage, which is as much as all the dual-
edge geometry data stored in flow solver. This memory usage was considered
prohibitive.

This approach also requires B, Kλ be updated during the momentum solve
and projection. So, updates due to configuration aren’t in a single place in
code. This was considered untenable from a software maintenance perspective.



182 computational sciences international

Temperature dependent viscosity

If the viscosity depends on the temperature, Eq. (12.59) is the function
of the temperature at time n + 1:

Kn+1vn+1 = −
∮

Γe
x

µ(Tn+1)∇Xvn+1F−1 JFTnXdΓe
X (12.60)

For the RHS K-operator, Kn is the function of the temperature at
time n:

Knvn = −
∮

Γe
x

µ(Tn)∇xvn · nx (12.61)

Energy Equation

Using the master balance equation, Eq. (5.43), for the scalar case, the
energy equation (see Eq. (5.55)), written in terms of temperature, with
a time-weighting similar to the momentum equation is

(1− θ)
{ρCpΩn+1Tn+1 − ρCpΩnTn

∆t
= −

∮
Γe

X

ρCpTn(v f − vm f )
∣∣
Γe

X

+
∮

Γe
X

κ∇XTn · nX +
∫

Ωe
X

q
′′′n
}

+θ
{ρCpΩn+1Tn+1 − ρCpΩnTn

∆t
= −

∮
Γe

X

ρCpTn(v f − vm f )
∣∣
Γe

X

+
∮

Γe
x

κ∇xTn+1 · nx +
∫

Ωe
x

q
′′′n+1

}
(12.62)

After rearranging,

ρCpΩn+1Tn+1 − ρCpΩnTn

∆t
= (1− θ)

∫
Ωe

X

q
′′′n + θ

∫
Ωe

X

q
′′′n+1

+ (1− θ)
∮

Γe
x

κ∇XTn · nX + θ
∮

Γe
x

κ∇xTn+1 · nx

−
∮

Γe
X

ρCpTn(v f − vm f )
∣∣
Γe

X

(12.63)

Let

Cn = ρCpΩn, Cn+1 = ρCpΩn+1

Kn
T = −

∮
Γe

X

κ∇X(·) · nX , Kn+1
T = −

∮
Γe

x

κ∇x(·) · nx

Qn =
∫

Ωe
X

q
′′′n = q

′′′nΩn, Qn+1 =
∫

Ωe
x

q
′′′n+1 = q

′′′n+1Ωn+1

(12.64)
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The fully-discrete energy equation is[
Cn+1 + θ∆tKn+1

T
]
Tn+1 = [Cn − (1− θ)∆tKn

T ]T
n−∮

Γe
X

ρCpTn(v f − vm f )
∣∣
Γe

X
+ ∆t

[
(1− θ)Qn + θQn+1]

(12.65)

Temperature dependent specific heat and conductivity

If the specific heat and conductivity depend on the temperature, Eq.
(12.65) needs to be modified according to the linearization:

[
C̃n+1 + θ∆tK̃n+1

T
]
Tn+1 = [C̃n − (1− θ)∆tKn

T − θ∆tK̃n
T ]T

n−∮
Γe

X

ρCp(Tn)Tn(v f − vm f )
∣∣
Γe

X
+ ∆t

[
(1− θ)Qn + θQn+1]

(12.66)

where

C̃n+1 = ρ
[
Cp(Tn) +

∂Cp(Tn)

∂T
Tn]Ωn+1

C̃n = ρ
[
Cp(Tn)Ωn +

∂Cp(Tn)

∂T
TnΩn+1]

K̃n+1
T = −

∮
Γe

x

[
κ(Tn) +

∂κ(Tn)

∂T
Tn]∇x(·) · nx

K̃n
T = −

∮
Γe

x

∂κ(Tn)

∂T
Tn∇x(·) · nx

(12.67)

Enthalpy equation with constant density and specific heat

The fully-discrete enthalpy equation with constant density and specific
heat is

ρΩn+1hn+1 − ρΩnhn

∆t
= (1− θ)

∫
Ωe

X

q
′′′n + θ

∫
Ωe

X

q
′′′n+1

+ (1− θ)
∮

Γe
x

κ∇XT(h)n · nX + θ
∮

Γe
x

κ∇xT(h)n+1 · nx

−
∮

Γe
X

ρhn(v f − vm f )
∣∣
Γe

X

(12.68)

The temperatures are evaluated by inverting a h(T) thermodynamic
relationship.
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Spalart-Allmaras Model

Using the scalar master balance equation, Eq. (5.43), the Spalart-
Allmaras (SA) model is written as

d
dt

∫
Ωx

ρν̃dΩx +
∮

Γx
ρν̃(v− vm) · nxdΩx =+

∮
Γx

ρ
(1 + Cb2

σ

)
(ν + ν̃)

∣∣
Γx
∇ν̃ · n˜xdΓx

−
∮

Γx
ρ

Cb2
σ

(ν + ν̃)
∣∣
Ωx
∇ν̃ · n˜xdΓx

+
∫

Ωx
ρCb1S̃ν̃dΩx −

∫
Ωx

ρCw1 fw

( ν̃

d

)2
dΩx

(12.69)

Considering the xn (X) and xn+1 configurations,

P = ρCbS̃ and D = ρCw fw
ν̃

d2 (12.70)

In the X configuration,

Mn =
∫

Ωe
X

ρdΩX

An(ρ, ν̃, vm) =
∮

Γe
X

ρ(·)(v f − vm f )dΓX

Kn = −
∮

Γe
X

(
1 + Cb2

σ

)
(νn + ν̃n)

∣∣
Γe

X
∇X(·) · nXdΓX

+
∮

Γe
X

Cb2
σ

(νn + ν̃n)
∣∣
Ωe

X
∇X(·) · nXdΓX

(12.71)

In the x configuration,

Mn+1 =
∫

Ωx
ρdΩx

Kn+1 =−
∮

Γe
x

1 + Cb2
σ

(νn + ν̃n)
∣∣
Γe

x
∇x(·) · nxdΓx

+
∮

Γe
x

Cb2
σ

(νn + ν̃n)
∣∣
Γe

x
∇x(·) · nxdΓx

(12.72)

We leave the source-terms “as is” for later linearization and use the
θ-weighting approach

(1− θ)

{
Mn+1ν̃n+1 −Mnν̃n

∆t
+ An(ρ, vn, vm)ν̃

n

+ Knν̃n −
∫

Ωe
X

[
Pn(ν̃n)− Dn(ν̃n)

]
ν̃ndΩX

}
= 0

+θ

{
Mn+1ν̃n+1 −Mnν̃n

∆t
+ An(ρ, vn, vm)ν̃

n

+ Kn+1ν̃n+1 −
∫

Ωe
x

(
[
Pn+1(ν̃n+1)− Dn+1(ν̃n+1)

]
ν̃n+1dΩx

}
= 0

(12.73)
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After some rearrangement, we obtain

Mn+1ν̃n+1 −Mnν̃n

∆t
+ θKn+1ν̃n+1 + (1− θ)Knν̃n + A(ρ, vn, vm)ν̃

n

+ θ
∫

Ωe
x

(Dn+1 − Pn+1)ν̃n+1dΩx + (1− θ)
∫

Ωe
X

(Dn − Pn)ν̃ndΩX = 0

(12.74)

Now, we setup the positivity-preserving linearization following [Spalart
and Allmaras, January 1992] in our current formulation. Let

I = θ
∫

Ωe
x

(Dn+1 − Pn+1)ν̃n+1dΩx + (1− θ)
∫

Ωe
X

(Dn − Pn)ν̃ndΩX

(12.75)
Assume that linearization takes place with respect to X and ignore

the dependence of S on Rn+1 in the SA model (note: accounting for
the effects of F on R in the n + 1 frame is complex, and ignored for
now. This is consistent with the selective use of lagged variables in the
original work by Spalart and Allmaras [Spalart and Allmaras, January
1992]).

Using dΩx = JdΩX , and expanding about “n”, and using ν̃n+1 −
ν̃n = ∆ν̃, we get

I = θ
∫

Ωe
X

{[
Dnν̃n +

∂Dn

∂ν̃
∆ν̃ν̃n + Dn∆ν̃n

]
−
[

Pnν̃n +
∂Pn

∂ν̃
∆ν̃ν̃n + Pn∆ν̃

]}
J dΩX

+ (1− θ)
∫

Ωe
X

(Dnν̃n − Pnν̃n)dΩX

(12.76)

Collecting terms

I = θ
∫

Ωe
X

(Dn − Pn)ν̃n JdΩX

+ (1− θ)
∫

Ωe
X

(Dn − Pn)ν̃ndΩX

+ θ
∫

Ωe
X

{
(Dn − Pn)(ν̃n+1 − ν̃n) +

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
ν̃n(ν̃n+1 − ν̃n) J dΩX

}
(12.77)

I =
∫

Ωe
X

[θ J + (1− θ)](Dn − Pn)ν̃ndΩX

+ θ
∫

Ωe
X

{
(Dn − Pn)︸ ︷︷ ︸ ν̃n+1 +

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
︸ ︷︷ ︸ ν̃nν̃n+1

}
JdΩX

− θ
∫

Ωe
X

{
(Dn − Pn)︸ ︷︷ ︸ ν̃n +

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
︸ ︷︷ ︸ ν̃nν̃n

}
JdΩX

(12.78)



186 computational sciences international

Since JdΩX = dΩx, we can map the last two integrals back to con-
figuration x, so that the semi-discrete form of the Eq.(12.74) is given
by:{

Mn+1 + θ∆tKn+1 + θ∆t
∫

Ωe
x

[
(Dn − Pn)

+

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
ν̃n
]

dΩx

}
ν̃n+1 =[

Mn − (1− θ)∆tKn]ν̃n − ∆t
∫

Ωe
X

[θ J + (1− θ)](Dn − Pn)ν̃ndΩX

− ∆tAnν̃n + θ∆t
∫

Ωe
x

[
(Dn − Pn) +

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
ν̃n
]

ν̃n dΩx

(12.79)

In the L.H.S. of the above equation, ν̃n+1 has been pulled out of the
integral assuming it to be piecewise constant across each element. A
similar procedure is carried out for the last term of the R.H.S.

Let us define(
Dn − Pn)

=
∫

Ωe
x

[
(Dn − Pn) +

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
ν̃n
]

dΩx (12.80)

Therefore,[
Mn+1 + θ∆tKn+1 + θ∆t(Dn − Pn

)
]
ν̃n+1 =[

Mn − (1− θ)∆tKn]ν̃n − ∆tAn(ρ, vn, vm)ν̃
n

− ∆t
∫

Ωe
X

[θ J + (1− θ)](Dn − Pn)ν̃ndΩX

+ θ∆t(Dn − Pn
)ν̃n

(12.81)

Note: In the limit of x → X, F = I, J = 1, it can be noted that the
base Eulerian SA model is recovered.

The integral term (third term) on the R.H.S of Eq.(12.81) can be re-
written in the current x configuration as follows∫

Ωe
X

[θ J + (1− θ)](Dn − Pn)ν̃ndΩX = ∫
Ωe

x

[θ J + (1− θ)](Dn − Pn)ν̃n dΩx

J

=
∫

Ωe
x

[θ +
(1− θ)

J
](Dn − Pn)ν̃ndΩx

(12.82)

Since J =
dΩx

dΩX
=

Ωn+1

Ωn , Eq.(12.82), can be discretized as follows

∫
Ωe

X

[θ J +(1− θ)](Dn− Pn)ν̃ndΩX =

[
θ +(1− θ)

Ωn

Ωn+1

]
(Dn− Pn)ν̃nΩn+1

(12.83)
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Equations (12.81) and (12.83) can be combined to give the following
equation

[
Mn+1 + θ∆tKn+1 + θ∆t(Dn − Pn

)

]
ν̃n+1 =

[
Mn − (1− θ)∆tKn]ν̃n − ∆t

[
θ + (1− θ)

Ωn

Ωn+1

]
(Dn − Pn)ν̃nΩn+1

− ∆tAnν̃n + θ∆t(Dn − Pn
)ν̃n

(12.84)

For a positivity-preserving scheme which ensures that the turbu-
lent viscosity stays positive through out the simulation, the following
modification is enforced in Eq.(12.84) following [Spalart and Allmaras,
January 1992].

(
Dn − Pn)

=
∫

Ωe
x

[
Pos(Dn − Pn) + Pos

(
∂Dn

∂ν̃
− ∂Pn

∂ν̃

)
ν̃n
]

(12.85)

where the operator Pos(·) (· being any scalar) is defined as

Pos(·) = max(·, 0) (12.86)

Positivity-Preserving Discretization

For any transient scalar transport equation involving advection, dif-
fusion, and source terms, Eqs.(12.84) and (12.85) can be generalized.
Let φ be any generic scalar for which a positivity-preserving scheme
is desired. Then, the θ-form of the discretized scalar master balance
equation for φ can be written in its general form as

[
Mn+1 + θ∆tKn+1 + θ∆t(Dn − Pn

)

]
φn+1 =

[
Mn − (1− θ)∆tKn]φn − ∆t

[
θ + (1− θ)

Ωn

Ωn+1

]
(Dn − Pn)φnΩn+1

− ∆tAnφn + θ∆t(Dn − Pn
)φn

(12.87)

together with

(
Dn − Pn)

=
∫

Ωe
x

[
Pos(Dn − Pn) + Pos

(
∂Dn

∂φ
− ∂Pn

∂φ

)
φn
]

(12.88)

Here, the forms of the source term operators D and P depend on the
model transport equation governing the transport of φ.
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RNG k− ε Model

The mathematical structure for the RNG k − ε model involves two
transport equations, but the general approach to the discretization in
space-time is very similar to that used for Spalart-Allmaras model.
Consequently, some steps involved in the ALE discretization proce-
dure are omitted here since they have already been discussed in the
earlier presentation of the ALE formulation for the Spalart-Allmaras
model.

The scalar master balance equation (5.43) is used to write the two-
equation k− ε model in a semi-discrete form

∂

∂t

∫
Ωx

ρkdΩx +
∮

Γx
ρk(v− vm) · ndΓx =

∮
Γx

(
µ +

µt

σk

)
∇k · ndΓx

+
∫

Ωx
2µtSijSij︸ ︷︷ ︸

Prod(k)

dΩx −
∫

Ωx
ρε︸︷︷︸

Diss(k)

dΩx

(12.89)

∂

∂t

∫
Ωx

ρεdΩx +
∮

Γx
ρε(v− vm) · ndΓx =

∮
Γx

(
µ +

µt

σε

)
∇ε · ndΓx

+
∫

Ωx
Cε1

ε

k
2µtSijSij︸ ︷︷ ︸

Prod(”)

dΩx −
∫

Ωx
Cε2

ρε2

k︸ ︷︷ ︸
Diss(”)

dΩx

(12.90)

where, the turbulent viscosity is defined as

µt = Cµρ
k2

ε
(12.91)

Here, Cε1, Cε2, Cµ, σk, and σε are the RNG model coefficients given in
Table 6.3 in §6.3.

In highly strained flows, the k-ε model is known to suffer from an
over-production of the turbulent kinetic energy in stagnation flows.
This mechanism is generally known as the “stagnation point anomaly”,
however, it can also occur for flows with high local strain rates. In or-
der to limit the turbulent intensity, we adopt the approach proposed
by Durbin [Durbin, 2009]. Here, the time-scale limiter is based on the
fact that the stress intensity ratio has been experimentally observed to
be about 0.3 in shear layers and cannot exceed this amount. A detailed
derivation of the time-scale limiter is provided in Durbin [Durbin,
2009].

The time-scale limiter is

TLim = min

 k
ε

,
αlim

Cµ

√
SijSij

 , (12.92)
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where TLim is the limited time-scale, αlim is a constant, αlim = 0.6/
√

6
[Durbin, 2009]. This time-scale is further used to limit the eddy vis-
cosity, µt, by recasting it in terms of TLim as follows:

µt = ρCµTLimk

= ρCµ min

 k
ε

,
αlim

Cµ

√
SijSij

 k. (12.93)

For implementing the positivity-preserving scheme, the production
and dissipation terms for the k-equation are

Prod(k) = 2µtSijSij,

Diss(k) = ρε. (12.94)

Alternatively, these terms may be written as

Prod(k) = P(k)k,

Diss(k) = D(k)k (12.95)

where

P(k) = 2µtSijSij
1
k

,

D(k) =
ρε

k
. (12.96)

Similarly, for the ε equation, the production/dissipation terms are

Prod(ε) = P(ε)ε,

Diss(ε) = D(ε)ε (12.97)

where

P(ε) =
2ρCµkCε1 SijSij

ε
,

D(ε) = Cε2

ρk
ε

. (12.98)

Discretized Equations

Using Eqs.(12.87) and (12.88) as a template for the positivity-preserving
discretization, the θ-weighted discretized form of the RNG k− ε equa-
tions for the scalars k and ε are

[
Mn+1 − ∆tθ

{
Kn+1 − (Dn

(k)− Pn
(k))

}]
kn+1 =[

Mn − ∆t
{

An − (1− θ)Kn}]kn

− ∆t
(

θ +
Ωn

Ωn+1 (1− θ)

)(
Dn(k)− Pn(k)

)
knΩn+1

+ ∆tθ(Dn
(k)− Pn

(k))kn

(12.99)
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[
Mn+1 − ∆tθ

{
Kn+1 − (Dn

(ε)− Pn
(ε))

}]
εn+1 =[

Mn − ∆t
{

An − (1− θ)Kn}]εn

− ∆t
(

θ +
Ωn

Ωn+1 (1− θ)

)(
Dn(ε)− Pn(ε)

)
εnΩn+1

+ ∆tθ(Dn
(ε)− Pn

(ε))εn

(12.100)

Here, the element-level operators are

Mn+1 =
∫

Ωx
ρdΩx, Mn =

∫
ΩX

ρdΩX (12.101)

An(ρ, ·, vm) =
∮

ΓX
ρ(·)(v− vm) · ndΓX (12.102)

Kn =
∮

ΓX

(
µ +

µt

σk,ε

)∣∣∣
ΓX
∇X(·) · ndΓX (12.103)

Kn+1 =
∮

Γx

(
µ +

µt

σk,ε

)∣∣∣
Γx
∇x(·) · ndΓx (12.104)

where the superscript e has been dropped to simplify the notation.
In Eq.(12.99) P(k) and D(k) are the Jacobians for Prod(k) and Diss(k)

and are given by

P(k) =
∂

∂k

(
P(k)k

)
= P(k) +

∂P(k)
∂k

k,

D(k) =
∂

∂k

(
D(k)k

)
= D(k) +

∂D(k)
∂k

k (12.105)

For the second-order incremental projection algorithm, the turbulent
eddy viscosity is frozen at tn, so that

∂P(k)
∂k

= −
2µtSijSij

k2 ,

∂D(k)
∂k

= −ρε

k2 (12.106)

Similarly, for the ε equation,

P(ε) =
∂

∂ε

(
P(ε)ε

)
= P(ε) +

∂P(ε)
∂ε

ε,

D(ε) =
∂

∂ε

(
D(ε)ε

)
= D(ε) +

∂D(ε)

∂ε
ε (12.107)

The derivatives of Prod(ε) and Diss(ε) become

∂P
∂ε

= −Cε1
2ρCµk

ε2 SijSij

∂D
∂ε

=
∂

∂ε

[
Cε2(ε)

ρε

k

]
(12.108)
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Substituting Eqs.(6.32) and (6.33) for Cε2,
∂D
∂ε

can be expanded as

∂D
∂ε

= −
ρSηk

ε2

[
−

C̃ε2Sη

η2 + CµSηη

{
2− 3η/η0

1 + βη3 −
3βη3(1− η/η0)

(1 + βη3)2

}]
(12.109)

where, Sη =
√

2 SijSij.

Positivity-Preserving Discretization

For the positivity-preserving algorithm, using Eq.(12.88), the source
terms are implemented with both implicit (RHS) and explicit (LHS)
contributions in Eqs.(12.99) and (12.100) as

Dn
(k)− Pn

(k) = Pos(Dn(k)− Pn(k)) + Pos
{

∂D
∂k
− ∂P

∂k

}
(12.110)

Dn
(ε)− Pn

(ε) = Pos(Dn(ε)− Pn(ε)) + Pos
{

∂D
∂ε
− ∂P

∂ε

}
(12.111)

The implementation of the k-ε model is based on a two-layer for-
mulation. For all interior elements, omitting any that are attached
to no-slip/no-penetration walls, the source terms are implemented as
follows.

k – equation:

1. Compute: ‖S‖2 = SijSij

2. Compute: P = 2µt‖S‖2/k,

3. Compute:
∂P
∂k

= P′ = −P
k

4. Compute: D = ρε/k

5. Compute:
∂D
∂k

= D′ = −D
k

6. Compute:
{

D− P
}
= D− P

7. Compute:
{

D− P
}
= Pos

(
D− P

)
+ Pos

(
D′ − P′

)
k

The source terms for the ε-equation are implemented using the same
positivity-preserving treatment as follows.

ε – equation:

1. Compute: ‖S‖2 = SijSij

2. Compute: Sη =
√

2SijSij

3. Compute: η = Sηk/ε
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4. Compute: P = Cε12µt‖S‖2/k

5. Compute:
∂P
∂ε

= P′ = 0

6. Compute:
∂D
∂ε

= D′ = ρ(C2ε + Cµη3(1− η/η0)/(1 + βη3))k

7. Compute: D =
∂D
∂ε

ε

8. Compute:
{

D− P
}
= D− P

9. Compute:
{

D− P
}
= Pos(D− P) + Pos(D′ − P′)ε

y∗-Insensitive Wall Functions

The RNG k-ε model is implemented using a two-layer approach with
wall functions. Wall functions bridge the viscosity-dominated thin
near-wall boundary layer region with that of the fully turbulent re-
gion. Wall function methods allow simulations using a moderate num-
ber of mesh cells making large industrial problems computationally
tractable. However, it must be noted that grid-sensitivity is one of
the most troublesome aspects of using wall functions (Albets-Chico et
al. [Albets-Chico et al., 2008]) with turbulence models.

The basis for most wall-function models traces back to the modi-
fied law-of-the-wall approach used by Launder and Spalding [Launder
and Spalding, 1974] (also, see the discussions Section 6.3). This type
of wall modeling approach is designed for use with meshes where the
first near-wall cell is placed in the logarithmic layer (inertial sublayer).
From an industrial point of view, for complex geometries, ensuring
that all the near wall cells are outside the viscous sublayer is problem-
atic. Also, the precise location of the logarithmic region is solution
dependent and may vary during the solution process. In order to
accommodate a more flexible meshing technique/mesh, we follow a
y∗-insensitive wall function (also called “scalable wall function”) ap-
proach as outlined in Grotjans et al. [Grotjans and Menter, 1998].

For the k-ε model, we use a two-layer approach that is common in
many industrial CFD codes. In this approach, the k-equation is solved
in the entire flow domain, while the ε equation is solved only up to
the wall-attached elements. In the wall region, ε is prescribed based
on the near-wall flow behavior, i.e., using the law of the wall. This
approach works very well with both the “scalable” and hybrid wall
function modeling approach.

The scalable wall function approach is based on limiting the mini-
mum value of the scaled wall coordinate (commonly denoted by y+,
y∗) such that the value of the velocity gradient at the first cell will be
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the same as if it was on the edge of the viscous sublayer. This con-
strains the lowest grid point to lie above the physical wall. Thus, this
approach neglects the true fluid dynamics within the viscous sublayer,
but this is also the case for the standard wall function approach where
the formulation breaks down for mesh points within the viscous sub-
layer.

To begin the discussion of the wall-function implementation, a rep-
resentative near wall element is shown in Fig. 12.1 along with the var-
ious wall normal distances. The wall element centroid distance (de-
noted by yp in Fig. 12.1) is scaled using

yp
∗ =

C1/4
µ ρ
√

kyp

µ
, (12.112)

where, k is the turbulent kinetic energy, ρ is the fluid density, and µ is
the molecular viscosity. The edge of the viscous sublayer is taken to
be at a distance yv from the wall (see Fig. 12.1) and the corresponding
scaled viscous sublayer distance is given by

yv
∗ =

C1/4
µ ρ
√

kyv

µ
= 11.225. (12.113)

Figure 12.1: Schematic of the two-layer
model of a near-wall element used in the
wall treatment. Here, p is the centroid
of the element, while yv and yp repre-
sent the normal distances of the viscous
sublayer and the element centroid from
the wall, respectively, and yn refers to the
maximum of the normal distances of all
the vertices of the given wall element.

Remark 8 In the Hydra implementation, yv
∗ is referred by yp11 .

Following the procedure outlined in Craft et al. [Craft et al., 2002]
and Albets-Chico et al. [Albets-Chico et al., 2008], a two-layer model
as shown in Fig. 12.1 is used to evaluate an average production of k to
be used in Eq.(12.89) for wall-attached elements.

The individual production rates of k in the log layer (Layer 1) and
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viscous sublayer (Layer 2) are given by

Prod(k) =


0 for yp

∗ < yv
∗ (Layer 2)

τ2
wall

κC1/4
µ ρk3/2y

for yp
∗ ≥ yv

∗ (Layer 1)
(12.114)

where,

τwall =
κC1/4

µ ρVp
√

k
ln(Eyp∗)

. (12.115)

Here, κ = 0.41 is the von Karman constant, E = 9.8, and Vp is the
wall-tangent velocity evaluated at the wall-element centroid p which
is evaluated as

Vp =‖ vp ‖ (12.116)

where
vp = (v− vwall)−

[
(v− vwall) · n

]
n (12.117)

and n is the wall normal.
For the y∗-insensitive wall functions, yp

∗ is replaced by applying
the following limiter

yp
∗
lim = max

(
yp
∗, yv

∗) . (12.118)

which ensures that yp
∗ is always above or at the edge of the viscous

sublayer. The value of yp and yn are then calculated from the modified
yp
∗
lim using Eqs.(12.112) and (12.118) and is given by:

yplim =
yp
∗
limµ

C1/4
µ ρ
√

k
. (12.119)

Remark 9 The definition of y∗ in our formulation (Eqs.(12.112) and (12.113))
differs from Craft et al. [Craft et al., 2002] in that,

y∗Craft =

√
kρy
µ

, (12.120)

and hence does not explicitly include the factor C1/4
µ in their definition. Con-

sidering this, yv
∗

Craft = 20 for their formulation.

Since Prod(k) is not a constant over the wall element but varies as
given in (12.114), an average value of Prod(k) denoted by Prod(k)|Av.

is used in the k-transport equation, Eq. (12.89). In our implementation,
a depth-averaged integration (i.e. integration along the wall normal
distance, y) is performed to obtain Prod(k)|Av. with the averaging lim-
its for y taken to be 0 and yn (see, Fig. 12.1). Here, yn is the maximum
of the wall normal distances of all the vertices in a given wall element.
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In the present formulation, yn is approximated to be twice the value
of yp for all element types (strictly equal only for Cartesian grids):

yn ≈ 2yp. (12.121)

The two-layer averaged production is then given as,

Prod(k)|Av. =
1
yn

∫ yn

0
Prod(k)dy

=
1
yn

∫ yv

0
Prod(k)dy︸ ︷︷ ︸

Viscous sublayer

+
1
yn

∫ yn

yv
Prod(k)dy︸ ︷︷ ︸

Turbulent loglayer

(12.122)

Using Eq.(12.114) in Eq.(12.122), Prod(k)|Av. is simplified to

Prod(k)|Av.=
τ2

wall

κC1/4
µ ρk1/2yn

ln
(yn

yv

)
(12.123)

where Prod(k)|Av. is used in place of Prod(k) in Eq.(12.89) for elements
along no-slip/no-penetration boundaries.

Similar to Prod(k)|Av., an average dissipation rate of k denoted by
Diss(k)|Av. is evaluated using a two-layer variation of ε as prescribed
in [Craft et al., 2002] and [Albets-Chico et al., 2008]. This average is
then used in Eq.(12.90). The assumed variation is shown in Fig. 12.2
and is expressed as

ε =



2νk
y2

v
for yp

∗ ≤ yv
∗

C3/4
µ k3/2

κy
for yp

∗ > yv
∗

(12.124)

where ν = µ/ρ. This implies that

Diss(k) = ρε =



2µk
y2

v
for yp

∗ ≤ yv
∗

ρ
C3/4

µ k3/2

κy
for yp

∗ > yv
∗

(12.125)

Similar to Prod(k)|Av., Diss(k)|Av. is obtained using a depth-averaged
two-layer integration and is given by:

Diss(k)|Av. =
1
yn

∫ yn

0
Diss(k)dy

=
1
yn

∫ yv

0
Diss(k)dy︸ ︷︷ ︸

Viscous sublayer

+
1
yn

∫ yn

yv
Diss(k)dy︸ ︷︷ ︸

Turbulent log−layer

(12.126)

Using Eq. (12.125) in Eq. (12.126), we then obtain

Diss(k)|Av.=
2µk
ynyv

+
ρC3/4

µ k3/2

κyn
ln
(yn

yv

)
. (12.127)
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Figure 12.2: Schematic of the assumed
two-layer variation of ε in the wall layer
elements. See Fig. 12.1 for the definitions
of the length scales.

Positivity-Preserving Discretizaton

For the positivity-preserving discretization, the production and dissi-
pation terms are written as

Prod(k)|Av.= P(k)k,

Diss(k)|Av.= D(k)k. (12.128)

Using Eqs.(12.123), (12.127), and (12.128), the following expressions are
obtained for P(k) and D(k)

P(k) =
τ2

wall

κC1/4
µ ρyn

ln
(yn

yv

) 1
k3/2 . (12.129)

D(k) =
2µ

ynyv
+

ρC3/4
µ

κyn
ln
(yn

yv

)
k1/2. (12.130)

The Jacobians for Prod(k)|Av. and Diss(k)|Av. are evaluated using
the same procedure as given in Eq.(12.105). However, τwall as given
by Eq.(12.115) is held constant during the Jacobian evaluation. With
this assumption and using Eqs.(12.129),(12.130), the following partial
derivatives are obtained

∂P(k)
∂k

= −3
2

P(k)
k

. (12.131)

∂D(k)
∂k

=
1
2

ρC3/4
µ

κyn
ln
(yn

yv

) 1
k1/2 (12.132)

The following implmentation is used for computing the implicit and
explicit terms in Eqs.(12.99) and (12.100) for the wall-attached ele-
ments:

k – equation:
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1. Compute: yp =‖ (redge − rcentroid) · n ‖

2. Compute: y∗p =
C1/4

µ ρ
√

k yp
µ

3. Compute: Limited yp
∗ = max

(
y∗p, yp11

)
4. Compute: Limited yp =

yp
∗µ

C1/4
µ ρ
√

k

5. Compute: yn = 2yp

6. Compute: yv =
yp11 µ

C1/4
µ ρ
√

k

7. Compute: vp = (v− vwall)−
[
(v− vwall) · n

]
n

8. Compute: Vp =‖ vp ‖

9. Compute: τwall =
κC1/4

µ ρVp
√

k
ln(Ey∗p)

10. Compute: P =
τ2

wall ln( yn
yv )

κC1/4
µ ρynk3/2

11. Compute:
∂P
∂k

= −3
2

P
k

12. Compute: D = 2µ
ynyv

+
ρC3/4

µ

√
k

κyn
ln
(

yn
yv

)
13. Compute:

∂D
∂k

=
C3/4

µ ρ ln( yn
yv
)

2κyn
√

k

14. Compute:
{

D− P
}
= D− P

15. Compute: D− P = Pos
(

D− P
)
+ Pos

(
∂D
∂k
− ∂P

∂k

)
k

In the two-layer model, the ε-equation, Eq.(12.90), is not solved in the
wall-attached elements. Instead, ε is prescribed at the centroid p of
the wall element as using Eq.(12.124) (se also, see Fig. 12.2). Similar
to the k-equation, the limited values of yp

∗ and yp are calculated from
Eqs.(12.119) and (12.118). Then, the value of ε at the wall-element
centroid is directly specified using

ε =
C3/4

µ k3/2

κyp
. (12.133)

ε – equation:
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1. Compute: yp =‖ (redge − rcentroid) · n ‖

2. Compute: y∗p =
C1/4

µ ρ
√

k yp
µ

3. Compute: Limited yp
∗ = max

(
y∗p, yp11

)

4. Compute: Limited yp =
yp
∗µ

C1/4
µ ρ
√

k

5. Compute: ε =
C3/4

µ k3/2

κyp

Modification of the momentum equation for the wall elements:

Very large velocity gradients occur close to the wall in a turbulent
boundary layer. With a wall-function-based model, the mesh needs to
be relatively coarse (due to the imposed lower limit on y∗ as explained
earlier) that results in a significant error in the prediction of such gra-
dients. Calculation of wall shear stress or the viscous flux of momen-
tum based on the molecular viscosity µ and the numerically estimated
velocity gradient would thus be largely in error. Hence, proper modi-
fications to the momentum equations need to be introduced to account
for the poorly resolved wall friction. The necessary modifications can
be either made through an added source term for the wall elements in
the momentum equation or through a modified viscosity µeff for the
wall elements that corrects for the erroneous estimate of the velocity
gradient [Bredberg, 2000]. The latter is implemented in our methodol-
ogy and the modified viscosity for the wall elements is given by

µeff =


µ for yp

∗ ≤ yv
∗

ρC1/4
µ k1/2κyp

ln
(

Eyp∗
) for yp

∗ > yv
∗.

(12.134)

Modification of the turbulent viscosity:

The turbulent viscosity, as mentioned earlier, is limited to avoid
spurious overproduction of the turbulent kinetic energy. The turbulent
viscosity is limited using the following equation

µt = ρCµ min

 k
ε

,
αlim

Cµ

√
SijSij

 k. (12.135)

Note that the time-scale limiter is not used by default, and must be enabled
through keyword input.
Modification of the thermal conductivity:
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For the turbulent model, the thermal conductivity, κ, for the wall
elements is modified as follows:

κeff = κ +
µtCp

pr
(12.136)

The derivative of the thermal conductivity is given by

∂κeff
∂T

=
∂κ(Tn)

∂T
+

µt

pr

∂Cp(Tn)

∂T
(12.137)

For the k-ε model, the thermal conductivity κ for the wall elements is
given by

κeff =
µCpy∗

t∗
(12.138)

The derivative is

∂κeff
∂T

= (µ
∂Cp(Tn)

∂T
+ Cp

∂µ(Tn)

∂T
)

y∗

t∗
+ µCp

∂( y∗
t∗ )

∂T
(12.139)

where the last term is ignored in the current implementation.

Modeling Guidelines

The main advantage of wall-functions is the relaxed requirement on
mesh resolution at walls. However, the main disadvantage of these
wall-functions is a strong dependence on the location of the mesh point
closest to a wall where the wall-functions are applied. Wall functions
based on the modified law-of-the-wall approach usually work the best
for wall elements whose centers lie in the fully turbulent layer (inertial
or log layer) which effectively imposes a lower limit on the value of y∗.
Some of the recommendations for a proper model setup as outlined in
Casey and Wintergerste [Casey and Wintergerste, 2000] are provided
below.

1. The usual recommendation for the lower limit of y∗ is typically
between 20 ≤ y∗ ≤ 30.

2. For moderate Reynolds number flows, the boundary layer extends
to 300 ≤ y∗ ≤ 500. Hence, a suggested upper limit for y∗ is ≈ 100.

3. A good resolution of the boundary layer is usually preferred for
flows in which the boundary layer effects are important. This has to
be done with the above imposed restrictions on choosing the values
of y∗ . Recommended boundary layer resolution requires at least
8–10 points in the region 20 ≤ y∗ ≤ 300.





13 Fluid-Solid Interaction

This chapter presents a survey of current literature on the algorith-
mic aspects of fluid-structure interaction (FSI), and the implementation
currently available in the Hydra Toolkit for FSI.

FSI Literature Survey

The global “elliptic” nature of the pressure in incompressible flows
introduces additional difficulties for coupling algorithms that are re-
alized as instabilities with exponential growth in the pressure. Un-
like the staggered algorithms used for compressible FSI, incompress-
ible FSI exhibits this behavior for near unity fluid-solid density ratios
with flexible structures. The development of stable, staggered, time-
accurate, incompressible FSI algorithms continues to be an active area
of research today. Here, we briefly review some of the relevant work
in this area.

The search for stable and accurate staggered fluid-structure inter-
action algorithms can be traced back to work on staggered methods
in the late 1970’s and early 1980’s. Examples of this include the work
by Park, et al. [Park et al., 1977], Hughes and Liu [Hughes and Liu,
1978a,b], Felippa and Park [Felippa and Park, 1980, Park, 1980, Park
and Felippa, 1980]. The bulk of this work focused on various parti-
tioning strategies that included implicit-explicit, explicit-implicit, and
implicit-implicit time-integrators. Although not directly relevant, this
work suggests the “partitioning-of-operators” strategy that has been
used for FSI in the Hydra Toolkit.

Partitioned/Staggered Algorithms

The work by Slone, et al. [Slone et al., 2002] coupled an unstructured-
grid finite volume incompressible solver to a finite element structural
code using the three-field formulation of Farhat, et al. [Farhat et al.,
1998]. In effect, this work used an iterative, staggered approach, albeit
implemented in a single code.

Gerbeau, et al. [Gerbeau et al., 2003], use a first-order approxi-
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mation of the mesh velocity in an apparently single-step algorithm
with a Jacobian-Free Newton-Krylov (JFNK) solution strategy for the
structure. Here, a potential-flow problem is introduced with the JFNK
iteration to achieve a more accurate estimate for the pressure. This ap-
proach neglects the velocity-pressure coupling in the fluid during the
JFNK iteration

In 2005, Fernandez, et al. [Fernández et al., 2005] introduced a
method based on a semi-implicit projection for the FSI coupling. A
second-order extrapolation is used for the structural displacements,
followed by advection-diffusion for the fluid velocity. The projection
used to obtain a div-free velocity field is integrated with the structural
solution. An iterative approach is used to achieve a stable algorithm,
accurate interface pressures, and a final div-free velocity field.

Monolithic Algorithms

The work by Noble, et al. [Noble et al., 2003] is one example of a
fully-coupled, monolithic Galerkin FEM approach to fluid-structure
interaction using level-sets to represent the structural interface. Al-
though the authors claim success for this approach, they also note that
the method performs best when the fluid and solid mesh size matches
at the interface. When the mesh sizes are not matched, they cite severe
ill-conditioning partly due to the use of Lagrange multipliers for the
kinematic constraints.

Michler, et al. [Michler et al., 2004] compare partitioned and mono-
lithic solution strategies for FSI and demonstrate the importance of
predictors for both approaches. In the case of monolithic algorithms,
the predictor helps to reduce the overall solution cost. For parti-
tioned schemes, the predictors improve the stability and accuracy of
the method. They demonstrate that second-order temporal accuracy
can be achieved using partitioned schemes with predictors.

Ahn and Kallinderis [Ahn and Kallinderis, 2006] present a geo-
metrically conservative finite-volume ALE method for general meshes.
Here, they demonstrate that a predictor-corrector method exhibits su-
perior stability and accuracy relative to segregated solution schemes.

The work by Hron and Turek [Hron and Turek, 2006] presents a
monolithic FEM ALE formulation for fluid-structure interaction prob-
lems. The displacement, velocity and pressure degrees-of-freedom are
solved using preconditioned Krylov methods in a monolithic system
of equations. This effort provides a good baseline for comparison with
prototypical benchmark FSI problems.

It is anticipated that the presence of flexible structural (shell) ele-
ments, sliding contact, and normal constraints in the structural mod-
els will produce linear systems that are extremely difficult to solve
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with iterative solution techniques. For example, it is well known that
commercial solid/structural codes such as Abaqus/Standard have dif-
ficulties using iterative solvers under these conditions. This suggests
the possibility that fully-coupled monolithic solution schemes may not
be tractable.

Load Transfers and Conservation

Michler, et al. [Michler et al., 2003] investigate the impact of conser-
vation at the fluid-structure interface on stability and accuracy. The
results indicate that preserving conservation at the interface has a sig-
nificant impact on stability and accuracy. Related to this work is the
work by Farhat, et al. [Farhat et al., 1998] on load/motion transfer in
aeroelastic applications.

In 2006, Jaiman, et al. [Jaiman et al., 2006] considered the conser-
vative transfer of load information at fluid-solid interfaces with non-
matching meshes. The considered the accuracy of point-to-element
projections and common-refinement methods for a curved interface.
They show that conservative transfers associated with common-refinement
preserve the stability of the coupled FSI system while maintaining en-
ergy conservation. In contrast, the point-to-element methods exhibited
spurious numerical oscillations that were related to the degree of grid
mismatch at the interface, and increased with surface curvature.

Formulation Issues

Hansbo [Hansbo, 2004] presents Nitsche’s method as a generalized
framework for treating coupled physics problems where an interface
is involved. This approach does not rely on Lagrange multipliers to en-
force interface constraints and permits generality in treating arbitrary
meshes at the interface.

Causin, et al. [Causin et al., 2005] attempt to explain the influence
of added-mass in the observed numerical instabilities associated with
incompressible fluid-structure problems. They demonstrate that for an
explicit partitioned algorithm, the method is unconditionally unstable
when

ρshs

ρ f µmax
< 1 (13.1)

where ρs is the solid density, hs is the mesh size of the structure at
the interface, ρ f is the fluid density, µmax is the maximal eigenvalue
for the added-mass operator. They also note that for problem parame-
ters where the explicit algorithm is unstable, fully-coupled monolithic
methods will require additional computational effort as well.

The work by Förster, Wall and Ramm also considers the instabili-
ties due to added-mass effects in staggered solution methods. They
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demonstrate the behavior of staggered and fully-coupled algorithms
on a driven-cavity with a flexible bottom. They conclude that the
destabilizing effects of the added-mass is a consequence of the seg-
regated solution method, and increasing accuracy of the scheme won’t
necessarily cure the instability.

The use of Robin transmission conditions for segregated FSI prob-
lems is considered in a series of papers by Badia, et al. [Badia et al.,
2008b,a, 2009]. The approach used here is applied in the context of
hemodynamics with thin membranes for simplified blood-vessel mod-
els. Here, a fully-coupled system is apparently solved using a custom
preconditioner based on the Robin-Robin boundary conditions.

Guidoboni[Guidoboni et al., 2009], Glowinski, Cavllini and Canic,
claim the development of a stable, loosely-coupled FSI algorithm that
requires no iterations between the fluid and structure. They use the
added-mass to stabilize the algorithm with the kinematic conditions
at the interface. The kinematically-coupled method uses a novel split-
ting approach that segregates the structure and fluid-loading from the
fluid-only problem. They claim an energy-preserving scheme that pro-
vides a single-step algorithm.

The recent work by Burman and Fernández [Burman and Fernán-
dez, 2007, 2009] and Fernández, et al. [Fernández et al., 2005, 2006]
use Nitsche’s method as a framework for developing their solution
strategies. We have borrowed directly from this work to develop the
stabilized solution method used in the Hydra Toolkit for FSI.

As an aside, we note here that the work by Roe, et al. [Roe et al.,
2007] considers the stability of fluid-thermal problems, i.e., conjugate
heat-transfer.

Stablized FSI Formulation

The momentum equation for the structure is given by

ρsa = ∇ ·œs + fs in Ωs (13.2)

where, œs is the stress tensor corresponding to the displacement field
u; v = u̇ (or vi = u̇i) and a = v̇ (or ai = v̇i) are the velocity and accel-
eration, respectively; fs is the body force and ρs is the density of the
structure. The initial value problem consists of finding the displace-
ment u which satisfy Eq. (13.2) together with the initial conditions,
natural boundary conditions and kinematic boundary conditions. The
initial conditions are given by

ui(x, 0) = ui0(x) in Ω (13.3)

vi(x, 0) = vi0(x) in Ω (13.4)
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the natural boundary conditions are given by

σijnj = ti on Γt (13.5)

and the kinematic boundary conditions can be specified in terms of
displacement, velocity, or acceleration. Whichever quantity is given,
the other two can be determined as

ui = ui or vi = vi or ai = ai on Γui (13.6)

where the superposed bar denotes prescribed boundary values; ui0(x, 0)
and vi0(x, 0) are the initial displacement and velocity respectively; n is
the unit normal to the domain Ω.

The momentum equation for the fluid is given by Eq.(1.5) which can
be written as

ρ
∂v f

∂t
+ (v f − vm) · ∇v f = ∇ ·œ f + f in Ω f (13.7)

here, œ f is given by Eq.(3.5), and vm is the mesh velocity.
On the fluid-structure interface Γl , the following coupling condi-

tions must be satisfied

us = u f and vs = v f on Γl (13.8a)

œs · n = œ f · n on Γl (13.8b)

where us and u f are the displacements of fluid and structure, respec-
tively.

The momentum equation for the structure is solved using the finite
element method (FEM) with the choice of time integrator either explicit
or implicit. The semi-discrete momentum equation for the structure is
given by

Msan+1
s + Ksun+1

s = fn+1
s + fn+1

l in Ω f (13.9)

where Ms is the mass matrix, Ks is the stiffness matrix, fn+1
s is the

external force, and fn+1
l is the coupling force due to the interaction

between fluid and structure. The superscript is used to denote the
time, e.g., un

s = us(n∆t), and ∆t is the time step.
The explicit or loosely coupled fluid-structure algorithm is currently

implemented as follows

1. Given un
f , vn

f , vn
m, and pn, calculate the interface force fn

1 , and send
to solid/structural mechanics solver.

2. Given un
s , vn

s , an
s , and receive the interface force fn

1 , solve Eq.(13.9).
for un+1

s , vn+1
s , and an+1

s , then send un+1
s and vn+1

s to CFD.
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3. CFD receives un+1
s and vn+1

s , solve Eq.(12.56) for un+1
f by enforcing

the interface condition Eq.(13.8).

4. Solve Eq.(11.29) forλ.

5. Update the pressure by using Eq.(11.30).

The above algorithm is known in the literature as a conventional
staggered algorithm [Burman and Fernández, 2009]. However, this al-
gorithm for incompressible FSI exhibits the instability for near unity
fluid-solid density ratio. In order to overcome this instability, the sta-
bilization term a

θ∆t is added in Eq.(11.29) as follows(
Kp +

a
θ∆t

)
λ = D (13.10)

where a is the penalty parameter and is given by a = min
(
h/p, diagArea

)
W θ ∆t

and W is a parameter.
The stabilization term added in the PPE equation has the following

form [Burman and Fernández, 2009]∮
Γ

a(pn+1 − pn)dΓ (13.11)

where

a = min(h/ρ, diagArea)W × θ∆t (13.12)

W = penalty_factor×A_edge (13.13)

penalty_factor = 4βS (13.14)

S is a user defined scale factor with default value of 1.

β =

{
1, if velocity in edge normal direction > 0
0, otherwise

(13.15)

A_edge=area of edge (facet).

h =
1

V1/3
min

(13.16)

Vmin = minimum of element volume.

diagArea =
diagMin
areaMax

diagMin = minimum value of the diagonal term in PPE matrix
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areaMax = maximum of A_edge

ρ is the fluid density.

The role of the stabilization term is to provide a slight damping at
the fluid-solid interface that effectively slows the rate of change of the
pressure over a time-step. The damping introduced is localized at the
fluid-solid interface and is vanishes in the limit at h→ 0.





Part III

Appendix A





14 Vector Notation

The dot product of two vectors, a = {ax, ay, az}T and b = {bx, by, bz}T

defined in R3, is defined as

a · b = axbx + ayby + azbz (14.1)

The dyadic product [Chadwick, 1976] between two vectors1 in R3 is 1 In general the vectors must have the
same dimensions.denoted as

ab = a⊗ b =

 axbx axby axbz

aybx ayby aybz

azbx azby azbz

 (14.2)

Spatial derivatives are represented in vector notation using the ∇,
which is defined as

∇ =

{
∂

∂x
,

∂

∂y
,

∂

∂z

}T

(14.3)

thus, the gradient of an arbitrary scalar φ can be written as

∇φ =

{
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

}T

(14.4)

The additional relations relevant to the ensuing discussion are

∇ · ∇φ = ∇2φ = ∆φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 (14.5)

a · ∇φ = ax
∂φ

∂x
+ ay

∂φ

∂y
+ az

∂φ

∂z
(14.6)

∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
(14.7)

∇a =



∂ax

∂x
∂ax

∂y
∂ax

∂z

∂ay

∂x
∂ay

∂y
∂ay

∂z

∂az

∂x
∂az

∂y
∂az

∂z


(14.8)
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∇aT =



∂ax

∂x
∂ay

∂x
∂az

∂x

∂ax

∂y
∂ay

∂y
∂az

∂y

∂ax

∂z
∂ay

∂z
∂az

∂z


(14.9)

a · ∇b =


ax · ∇bx

ay · ∇by

az · ∇bz

 =



ax
∂bx

∂x
+ ay

∂bx

∂y
+ az

∂bx

∂z

ax
∂by

∂x
+ ay

∂by

∂y
+ az

∂by

∂z

ax
∂bz

∂x
+ ay

∂bz

∂y
+ az

∂bz

∂z


(14.10)

∇ · (ab) = ∇ · (a⊗ b) =



∂

∂x
(axbx) +

∂

∂y
(axby) +

∂

∂z
(axbz)

∂

∂x
(aybx) +

∂

∂y
(ayby) +

∂

∂z
(aybz)

∂

∂x
(azbx) +

∂

∂y
(azby) +

∂

∂z
(azbz)


(14.11)



15 Low Reynolds Number Functions used in the k − ε

Model

In general, the k − ε model performs poorly on wall-bounded flows,
where the model equation for ε cannot be integrated all the way to the
wall due to the singularities that develop in the ε equation. These sin-
gularities are related to low-Re number effects. For the simplest wall-
bounded cases (channel flows and boundary layers with zero pressure
gradients) corrections to the original model have been presented that
improve the accuracy of the predictions. These low-Re corrections usu-
ally consist of damping functions that bound the source terms in the
ε equation and reduce the amount of turbulence viscosity in the near
wall region, enhancing the accuracy of the model in wall-bounded
flows.

∂ρε̃

∂t
+

∂

∂xj

(
ρũj ε̃

)
=

∂

∂xj

(
ρ(ν + νt/σε)

∂ε̃

∂xj

)
− cε1 f1

ε̃

k
τ(ui, uj)

∂ũi
∂xj

− cε2ρ f2
ε̃2

k
− 2

3
(2− cε1)ρε̃

∂ũj

∂xj
+ ρE

(15.1)

ε = εΓDwall + ε̃ (15.2)

The turbulent viscosity is controlled using damping functions

νt = cµ fµ
k2

ε̃
(15.3)

In general the wall-functions depend on the following parameters

ReT =
k2

ε̃ν
, Ry =

k1/2y
ν

, y+ =
uτy

ν
(15.4)

However the selection of the previous parameters is absolutely em-
pirical, therefore the selection of the wall-function is purely deter-
mined by their performance predicting turbulent flows.

Different low-Re corrections have been proposed to handle the wall-
boundary conditions, here some of the most relevant are summarized [Wilcox,
1998].
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• Jones-Launder Model [Launder and Spalding, 1974]:

fµ = e−2.5/(1+ReT/50) (15.5a)

f1 = 1 (15.5b)

f2 = 1− 0.3e−Re2
T (15.5c)

εΓDwall = 2ν

(
∂
√

k
∂y

)2

(15.5d)

E = −2ννT

(
∂2U
∂y2

)2

(15.5e)

cε1 = 1.44, cε2 = 1.92, cµ = 0.09, σk = 1.0, σε = 1.3 (15.6)

Note, the coefficients reported for the high Re version of k− ε in the
original reference [Jones and Launder, 1972] depart slightly from
the standard coefficients. However, the differences observed be-
tween these two sets of coefficients is negligible, because the effect
of the different coefficients is on the production and dissipation of ε,
which in the end cancels out, see Launder and Spalding [Launder
and Spalding, 1974].

• Launder-Sharma Model [Launder and Sharma, 1974]

fµ = e−3.4/(1+ReT/50)2
(15.7a)

f1 = 1 (15.7b)

f2 = 1− 0.3e−Re2
T (15.7c)

εΓDwall = 2ν

(
∂
√

k
∂y

)2

(15.7d)

E = 2ννT

(
∂2U
∂y2

)2

(15.7e)

cε1 = 1.44, cε2 = 1.92, cµ = 0.09, σk = 1.0, σε = 1.3 (15.8)

• Lam-Bremhorst Model [Lam and Bremhorst, 1981]

fµ = (1− e−0.0165Ry)2(1 + 20.5/ReT) (15.9a)

f1 = 1 + (0.05/ fµ)
3 (15.9b)

f2 = 1− e−Re2
T (15.9c)

εΓDwall = 0 (15.9d)

E = 0 (15.9e)
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cε1 = 1.44, cε2 = 1.92, cµ = 0.09, σk = 1.0, σε = 1.3 (15.10)

• Chien Model [Chien, 1982]

fµ = 1− e−0.0115y+ (15.11a)

f1 = 1 (15.11b)

f2 = 1− 0.22e−(ReT/6)2
(15.11c)

εΓDwall = 2ν
k
y2 (15.11d)

E = −2ν
ε̃

y2 e−y+/2 (15.11e)

cε1 = 1.35, cε2 = 1.80, cµ = 0.09, σk = 1.0, σε = 1.3 (15.12)

For the Jones-Launder, Launder-Sharma and Chien models the wall-
function reproduces the correct asymptotic behavior for ε in the most
simple wall-bounded flows. Therefore, the following conditions at the
wall can be specified for these models:

kΓDwall = 0 and εΓDwall = 0 (15.13)

For the Lam-Bremhorst model the boundary conditions are applied
directly on ε.

εΓDwall = ν
∂2k
∂y2 or εΓNwall =

∂ε

∂xj
n̂j = 0 (15.14)

We note here that the original paper of Jones and Launder [Jones
and Launder, 1972] suggested the use of ε = 0 at the wall. For free-
stream boundary conditions the following relations are usually imple-
mented

kΓDin =
3
2

[
U∞

( u′

U∞

)]2
(15.15a)

εΓDin = c3/4
µ

k3/2

l
(15.15b)

εΓDin = cµρ
k2

∞
µ

(µT
µ

)
(15.15c)

Here, u′ is the intensity of the velocity fluctuations, l is the turbulent
integral scale and µT is the turbulent viscosity.

The turbulent transport terms require gradients of the flow and tur-
bulent variables, the flow and turbulent variables and, the distance
from the wall.
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